mércores, 28 de decembro de 2022

Catro problemas aritméticos

Sei que en distintos momentos teño visto os problemas que vou presentar pero nunca os vira todos xuntos ata que os vin nun capítulo do libro Compreender os números na matemática escolar, de Hung-Hsi Wu (Porto Editora 2017) , editado en colaboración coa Sociedade Portuguesa de Matemática (SPM). O texto parte da preocupación do autor por como se lle ensinan os números aos nenos durante a educación primaria e secundaria. A tese principal é que o profesorado debe coñecer, e en boa medida dar a coñecer, os números como un sistema ben fundamentado en definicións precisas e traballado con regras lóxicas. Entende que non se lle poden ofrecer aos estudantes visións dos números confusas e incoherentes. Por exemplo, se se lles presenta aos alumnos o concepto de fracción como un pedazo de pizza, que sentido terá pedirlles despois que multipliquemos dous pedazos de pizza?

Hung-Hsi Wu considera que debemos coñecer as razóns de calquera resultado, aínda que non sexa posible explicarllo en toda a súa profundidade aos alumnos. Poñamos un caso crítico, o produto de números negativos. Por que $\left ( -n \right )\left ( -m \right )=nm$? 

Primeiro xustificaremos que $\left ( -1 \right )\left ( -1 \right )=1$. Comecemos sumándolle $-1$

$-1+\left ( -1 \right )\left ( -1 \right )=$             como $1$ é o neutro do produto

$-1\cdot 1+\left ( -1 \right )\left ( -1 \right )=$             aplicando a propiedade asociativa

$-1\cdot \left ( 1+\left ( -1 \right ) \right )=$             tendo en conta que $1$ e $-1$ son inversos para a suma

$ -1\cdot 0=0$             finalmente aplicamos que o produto por $0$ sempre dá $0$

Así temos que $-1+\left ( -1 \right )\left ( -1 \right )=0$ polo que $\left ( -1 \right )\left ( -1 \right )=1$ pois ten que ser o oposto de $-1$.

Vexamos agora, aplicando a propiedade distributiva, que $-1\cdot \left ( -m \right )=m$

$$-1\cdot \left ( -m \right )=-1\cdot \left ( \left ( -1 \right ) +...^{(m}...+\left ( -1 \right )\right )= \\=\left ( -1 \right )\left ( -1 \right )+...^{(m}...+\left ( -1 \right )\left ( -1 \right )=1+...^{(m}...+1=m$$

Finalmente veremos que $\left (-n  \right )\left (  -m\right )=mn$ aplicando outra vez a propiedade distributiva

$$\left (-n  \right )\left (  -m\right )=\left ( \left ( -1 \right ) +...^{(n}...+\left ( -1 \right )\right )\left ( -m \right )=\\=\left ( -1 \right )\left ( -m \right )+...^{(n}...+\left ( -1 \right )\left ( -m \right )= m+...^{(n}...+m=nm$$

Calquera, un pouco afeito a traballar con este tipo de razoamentos observará que o presentado aquí está construído no ar: está xustificada a propiedade distributiva de números enteiros?, onde se demostrou que o produto dun número enteiro por $0$ sempre dá $0$?, e o resultado de que $x+(-1)=0\Rightarrow x=1$?... Efectivamente, este tipo de deducións necesitan montar un edificio ben estruturado e fundamentado. Iso é o que fai Hung-Hsi Wu nese libro. Quizais noutra ocasión comente con máis vagar estas ideas. Agora paso a recoller o que el chama "problemas interesantes". Veremos que, aínda que só cómpre saber sumar, restar, multiplicar e dividir, tamén se precisa unha capacidade de comprensión e reflexión de certa profundidade.


Problema 1. O Paul viaxou na moto ata Lanterntown a unha velocidade constante de 15 quilómetros por hora. Para a viaxe de volta decidiu aumentar a velocidade (aínda constante) a 18 quilómetros por hora. Cal foi a velocidade media da viaxe de ida e volta?


Problema 2. Un tren deprázase entre dúas cidades a velocidade constante. Se aumentase a velocidade nun terzo, en que porcentaxe se reduce o tempo da viaxe?


Problema 3. O 99% do peso duns pepinos frescos está constituído por auga. 300 quilos deses cogombros foron almacenados durante un tempo, así que cando foron postos á venda evaporárase parte desa auga resultando que o peso en auga era dun 98%. Canto pesarán estes cogombros parcialmente deshidratados?


Problema 4. Disponse dunha xerra de viño e unha cunca de auga. Retírase da cunca unha culler de auga e bótase na xerra de viño. A mestura reméxese ben e, de seguido, unha culler da mestura bótase na cunca. Haberá máis auga na xerra que viño na cunca ou viceversa? Resolve tamén o problema sen supoñer que a mestura fose remexida. 

mércores, 7 de decembro de 2022

Un novo método para as ecuacións cuadráticas

A finais do 2019 espallábase unha nova bastante peculiar sobre a resolución da ecuación cadrática. Por ter a súa orixe nos EEUU alcanzou unha gran difusión e debeu chegar a todo aquel que tiña que ver coas matemáticas, especialmente co ensino das matemáticas. Anunciábase como "un novo método para abordar a resolución das ecuacións cuadráticas" no que se evita o doloroso esforzo de memorización da fórmula. O máis sorprendente era que ese inédito método, que podía entender calquer escolar, foi ignorado durante 4000 anos. Como se pode ver, a cousa non tiña traza. O peor de todo é que houbo quen lle fixo caso. Con 8000 millóns de persoas paseando polo planeta non é de estrañar que haxa unha boa manchea de crédulos.

Cómpre moita fachenda para realizar esas afirmacións. A miña impresión era que se trataba dun proxecto puramente crematístico. Se hoxe imos á páxina do presunto descubridor poderemos inscribirnos nunha chea de cursos on-line de matemáticas por un prezo duns 399$ cada un. A educación para quen a poida pagar. Unha bonita materialización da competencia emprendedora (da LOMCE ou da LOMLOE, tanto me ten). Tamén é un excelente exemplo de como contribuír a edificar unha educación discriminatoria. 

Sobre o contido da publicación que prometía evitar a fórmula da ecuación cuadrática, pouco se pode dicir. Calquera que teña un mínimo de experiencia docente sabe que o que menos importa é a fórmula. É mentira que esta sexa un impedimento para a aprendizaxe. Incluso aqueles alumnos con máis dificultades acábana aprendendo sen ningún doloroso esforzo de memorización. Basta con facer unha boa colección de exercicios na que a teñan que aplicar. Usar o algoritmo argallado por Po-Shen Loh, que así se chama o autor desta argallada, non melloraría as cousas. O que si é importante é enfrontar ao alumnado a diversos achegamentos a este tópico. Convén que recoñezan como usar as identidades notables para resolver algunhas ecuacións cuadráticas. Tamén é importante que aprendan a estudalas sistemáticamente. Por exemplo deben recoñecer a relación entre o discriminante e o número de solucións reais así como as fórmulas de Viète que relacionan os coeficientes da ecuación coa suma e o produto das solucións. Convén que saiban manipular este tipo de expresións para que o coeficiente de $x^{2}$ sexa a unidade. Teñen que comprender a relación entre as solucións e os polinomios irreducibles que descompoñen a expresión alxébrica. Cómpre que interioricen a relación entre os coeficientes e a gráfica da parábola asociada e que identifiquen os puntos de corte do eixo de abscisas como as solucións da ecuación. Deberían discernir o eixo de simetría desa parábola, o vértice da mesma e saber a súa relación tanto cos coeficientes como coas solucións da ecuación. É unicamente sobre este aspecto sobre o que se centra o artigo de Po-Shen Loh, claro que el non fai referencia ningunha ás parábolas pois xoga todo no campo alxébrico e só se centra na dedución da maldita fórmula, como se o estudo das ecuacións cuadráticas se limitara a iso. Pola contra, critica o métido de completar o cadrado por ser máis incómodo e menos directo. Resulta que o que se vende como novo tamén ten o defecto de ser máis incómodo e menos directo... que a fórmula.

Vexamos e comparemos ese *novo método co arcaico de completar o cadrado

Un *novo método

Partimos da ecuación xeral de segundo grao:   $ax^{2}+bx+c=0$

Sabemos que se dividimos por $a$ obteremos unha expresión na que o coeficiente de $x^2$ pasará a ser a unidade: $$x^{2}+\frac{b}{a}x+\frac{c}{a}=0$$

Por outra banda, se $x_{1}$ e $x_{2}$ son as solucións, poderemos descompoñer a anterior expresión nun produto:

$$x^{2}+\frac{b}{a}x+\frac{c}{a}=\left ( x-x_{1} \right )\left ( x-x_{2} \right )=x^{2}-\left (x_{1} +x_{2}\right )x+\left ( x_{1} x_{2}\right )=x^{2}-Sx+P$$

Disto podemos concluir que buscar as solucións é equivalente a pescudar dous números que sumen $S=-\frac{b}{a}$ e que teñan como produto $P=\frac{c}{a}$. Agora ben, dous números que sumen $S$ deben ter media $\frac{S}{2}$, de aí que serán da forma $\frac{S}{2}\pm z$ e o seu produto será:

$$\left (\frac{S}{2} +z \right )\left ( \frac{S}{2} -z\right )=\left (  \frac{S}{2}\right )^{2}-z^{2}=P$$

Despexando $z$

$$z= \sqrt{\left ( \frac{S}{2} \right )^{2}-P}$$

Unha vez calculado $z$ xa temos as dúas solucións:

$$x=\frac{S}{2}\pm z=\frac{S}{2}\pm \sqrt{\left ( \frac{S}{2} \right )^{2}-P}$$

Aínda que noutra orde e con outra presentación todas estas cousas téñoas contado ducias de veces na aula. U-la a novidade?

O método de completar o cadrado

Agora si que vou compartir algo que presento na clase desta maneira, normalmente en 3º da ESO. 

Al-Jwarizmi (IX) foi un matemático que traballou na Casa da Sabiduría, un centro de estudos en Bagdad, único no mundo nesta época. É o autor do libro Al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala. Tal é a súa importancia que o vocablo al-jabr é o que lle dá nome a unha enorme rama das matemáticas: a álxebra

Vexamos como Al-Jwarizmi nos explica a resolución das ecuacións de segundo grao. Debemos ter en conta que daquela aínda non se desenvolvera a notación que usamos actualmente, polo que tiña  que presentar todas as ecuacións en forma literal. Ademais nunca usaba números negativos; pensemos que ata finais do século XIX non se aceptan plenamente. Por exemplo, cando presenta a ecuación $x^{2}+10x-39=0$ prefire facelo na forma $x^{2}+10x=39$, con todos os valores positivos. Claro que Al-Jwarizmi escribe no seu lugar algo así como " un cadrado máis dez raíces é igual a trinta e nove". O orixinal da súa visión é que imaxina esta ecuación en forma xeométrica. Algo semellante a isto:

Agora cortamos o rectángulo pola metade, tal e como está indicado. Pegamos eses dous anacos ao cadrado, obtendo a seguinte figura en forma de L invertido e de área 39.
Finalmente completamos a figura construíndo un cadrado. Para iso temos que engadir un cadrado 5x5, de área 25. De aí que a área do cadrado grande sexa $x^{2}+10x+25=39+25=64$

Entón o lado do cadrado grande será $8=x+5$. De aí que $x=3$
As vantaxes desta representación son a súa contextualización histórica e a relación que se establece entre a álxebra e a xeometría. A primeira delas amósanos unha ciencia en construción fronte a un resultado aparentemente caído do ceo. Achéganos así un saber máis próximo e humano. Tamén se identifican algunhas debilidades que se irían superando con tempo e esforzo como a inexistencia dunha notación matemática ou a incapacidade para traballar con números negativos. A segunda das vantaxes é unha conexión da que non podemos prescindir nin na práctica das matemáticas nin no seu ensino, a de poder abordar un problema desde mundos aparentemente distintos, neste caso o xeométrico e o alxébrico. 

Un novo método para as ecuacións cuadráticas
Agora si, despois dos parágrafos anteriores que non contiñan ningunha novidade, por fin vou presentar o motivo para elaborar esta entrada. Trátase dun problema tan anódino coma o seguinte:
Problema. Resolve $\sqrt{x+5}=5-x^{2}$
Non parece nada apaixonante. Un coma tantos deses exercicios que se propoñen para practicar a resolución de ecuacións irracionais. "Nada que me poida chamar a atención", pensei e equivoqueime. 
A resolución que propoñen no libro La matemática elegante (URSS 2007) é encantadora. Comeza, como é de esperar, elevando ambos membros ao cadrado: 
$$x+5=5^{2}-2\cdot 5x^{2}+x^{4}\quad\quad [1]$$
O habitual é que continuemos operando e simplificando a expresión ata obter unha ecuación polinomial de grao 4:
$$x^{4}-10x^{2}-x+20=0$$
Pero esta ecuación non ten raíces enteiras, nin tan siquera racionais. De aí que pensemos que debemos intentar botar man dalgún método que nos aproxime algunha delas... ou, e aquí está a novidade, escribir a expresión [1] deste outro xeito:
$$5^2-\left ( 2x^{2}+1 \right )5+\left ( x^{4}-x \right )=0$$
Para aplicarlle a maldita fórmula a esta forma cuadrática en función do $5$, no canto de facelo en función de $x$!:
$$5=\frac{2x^{2}+1\pm \sqrt{\left ( 2x^{2} +1\right )^{2}-4\left ( x^{4}-4x \right )}}{2}=\frac{2x^{2}+1\pm \left ( 2x+1 \right )}{2}$$
Que dá lugar a un par de ecuacións de segundo grao, agora en $x$;
$$10=2x^{2}+1\pm \left ( 2x+1 \right )$$
Se escollemos o signo positivo obtemos a ecuación $$2x^{2}+2x-8=0\\x^{2}+x-4=0$$
Que ten como solucións $$x=\frac{-1\pm \sqrt{17}}{2}$$
Para o signo negativo obremos a ecuación $$2x^{2}-2x-10=0\\x^{2}-x-5=0$$
Que ten como solucións $$x=\frac{1\pm \sqrt{21}}{2}$$

mércores, 23 de novembro de 2022

Un resultado sobre arcocotanxentes

Non imos dar un resultado sobre arcotanxentes, vai ser sobre arcoCOtanxentes. Se liches mal e pensabas que trataría sobre as insulsas arcotanxentes, podes abandonar este artigo.

As dúas anteriores entradas deste blogue ([1] e [2]) estiveron adicadas ofrecer solucións do seguinte problema recollido do libro Circo Matemático (Alianza Editorial) de Martin Gardner:

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$

A última de todas elas facía uso dun concepto matemático moi en desuso, o arcocotanxente. En concreto utilizaba a seguinte fórmula: $$arccot1+arccot2+arccot3=90$$
A definición das razóns trigonométricas seno, coseno e tanxente é moi clara. O mesmo podemos dicir das correspondentes razóns inversas cosecante, secante e cotanxente. De aí que as súas funcións inversas sexan, nun principio, conceptos da mesma dificultade: arcoseno, arcocoseno, arcotanxente, arcocosecante, arcosecante e arcocotanxente. Porén, como as razóns inversas só son iso, razóns inversas, apenas ten sentido o traballo coas mesmas. Isto leva que que as funcións inversas das razóns inversas fiquen marxinadas. Pero remexendo no problema dos tres cadrados achei un resultado no que si resulta natural o uso do arcocotanxente. Ademais o resultado realmente fermoso.
Vou reproducir un artigo de Charles W. Trigg aparecido no ano 1973 na revista The Fibonacci Quaterly porque, efectivamente, o resultado sobre arcocotanxentes é un resultado sobre a sucesión de Fibonacci. 
Para comezar temos que recordar unha propiedade moi coñecida polos afeccionados a esta sucesión, a identidade de Cassini. 
Identidade de Cassini. $F_{k+1}F_{k}-F_{k}^{2}=\left ( -1 \right )^{k}$
Non é complicado atopar na rede algunha dedución desta fórmula, como a seguinte, debida a Donald Knut:$$F_{k+1}F_{k-1}-F_{k}^{2}=det\begin{pmatrix} 1 &1 \\ 1 & 0 \end{pmatrix}^{k}=\left (det\begin{pmatrix} 1 &1 \\ 1 & 0 \end{pmatrix} \right )^{k}=\left ( -1 \right )^{k}$$

Para $k=2n+1$ a identidade de Cassini será: $$F_{2n+2}F_{2n}-F_{2n+1}^{2}=-1$$ Cambiando de signo obtemos outra fórmula $$F_{2n+1}^{2}-F_{2n+2}F_{2n}=1$$
Que usaremos para calcular a seguinte expresión:$$F_{2n+1}F_{2n+2}-F_{2n}F_{2n+3}=F_{2n+1}\left ( F_{2n+1}+F_{2n} \right )-F_{2n}\left ( F_{2n+2}+F_{2n+1} \right )=$$ $$=F_{2n+1}^{2}+F_{2n+1}F_{2n}-F_{2n}F_{2n+2}-F_{2n}F_{2n-1}=F_{2n+1}^{2}-F_{2n}F_{2n-1}=1$$
Temos pois que:$$F_{2n+1}F_{2n+2}-F_{2n}F_{2n+3}=1$$
Aplicando a propiedade fundamental de formación da sucesión de Fibonacci a $F_{2n+3}$ ($F_{2n+3}=F_{2n+2}+F_{2n+1}$ ) e sumando $F_{2n}^{2}$:

$$F_{2n+1}F_{2n+2}-F_{2n}\left ( F_{2n+2} +F_{2n+1}\right )+F_{2n}^{2}=F_{2n}^{2}+1\\ \left ( F_{2n+1}-F_{2n} \right )\left ( F_{2n+2} -F_{2n}\right )=F_{2n}^{2}+1$$ Consideremos o seguinte esquema no que o punto $Q$ está a unha distancia $F_{2n}$ de $N$. $R$ dista $F_{2n+1}$ unidades de $N$ e $R$ dista $F_{2n+2}$ de $N$. Aplicando a última fórmula deducida:

$$\frac{QP}{MP}=\frac{F_{2n+1}-F_{2n}}{\sqrt{F_{2n}^{2}+1}}=\frac{\sqrt{F_{2n}^{2}+1}}{F_{2n+2}-F_{2n}}=\frac{MP}{RP}$$
Onde calculamos MP aplicando o teorema de Pitágoras ao triángulo rectángulo $MNP$
Os triángulos $RPM$ e $QPN$ son semellantes xa que os lados que determinan o ángulo en $P$ son proporcionais. Entón o ángulo coloreado no vértice M, $ \angle QMP=\gamma $ e, como xa temos visto anteriormente, isto significa que $\alpha=\beta+\gamma$, ou
$$arccotF_{2n}=arccotF_{2n+1}+arccotF_{2n+2}$$
Lembremos a sucesión: $$\begin{matrix} F_{0} &F_{1} & F_{2} &F_{3} & F_{4} & F_{5} &F_{6} & F_{7} &F_{8}... \\ 0& 1& 1 & 2&3 &5 &8 &13 & 21... \end{matrix}$$
De aí que poidamos facer un desenvolvemento telescópico da seguinte suma:
$$arccot1=arccot2+arccot3=arccot2+arccot5+arccot8=....=\sum_{i=1}^{\infty }arccotF_{2i+1}$$

mércores, 16 de novembro de 2022

Tres cadrados, moitas solucións.2

Na anterior entrada presentaba este problema que aparecía no libro Circo matemático (Alianza Editorial) de Martin Gardner.

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$


Alí xa indicaba  que $\alpha=45$, polo que o problema é equivalente a demostrar que $\alpha+\beta+\gamma=90$. Tamén daba cinco solucións ao mesmo. Continuamos (e rematamos) a serie de solucións

6. Sen palabras
Quizais esta sexa a demostración máis simple

7. Números complexos
Despois da demostración máis simple, a máis complexa.
Os ángulos $\alpha$, $\beta$ e $\gamma$ son os argumentos dos números complexos $1+i$, $2+i$ e $3+i$:

$$1+ \ i=r_{1}e^{\alpha }\\1+2i=r_{2}e^{\beta }\\1+3i=r_{3}e^{\gamma }$$
$$\left ( 1+i \right )\left ( 1+2i \right )\left ( 1+3i \right )=r_{1}r_{2}r_{3}e^{\alpha+\beta +\gamma}$$
$$\alpha +\beta +\gamma =arg\left [ \left ( 1+i \right ) \left ( 2+i \right )\left ( 3+i \right )\right ]=arg\left ( 10i \right )=90$$

8. Ángulo inscrito
Tanto este resultado como o seguinte recollinos dese país das marabillas que é Cut the Knot. Como se verá, dúas pedras preciosas.

Por construción o ángulo ∠QTR é igual ao ángulo ∠RPS.
∠RPS é un ángulo inscrito na circunferencia que abrangue o mesmo arco que ∠RQS, polo que son iguais. Xa na solución 5 a este mesmo problema vimos que $\alpha$ é a suma de $\beta$ e $\gamma$ por ser exterior ao triángulo QRS.

9. Circunferencia inscrita nun cadrado
Isto é unha adaptación de Cut of de Knot

Sobre unha circunferencia de raio 5 trazamos todos os segmentos que se poden ver na imaxe. Consideremos o triángulo isóscele de ángulos $2\gamma$, $\theta$ e $\theta$. Como a súa suma é de 180º debe verificarse que $\theta=90-\gamma$. De aí que as denominacións dos ángulos $\gamma$, $2\gamma$, $\beta$ e $2\beta$ sexan coherentes. Nótese que continuamos coa mesma denominación para $\gamma$ e $\beta$ que nos apartados anteriores.
Como $2\gamma+2\beta=90$ tamén se verifica a igualdade que buscamos: $\gamma+2\beta=45$

10. As arcotanxentes
Foi esta solución a que me moveu a escribir estas entradas no blogue. Nalgunha outra ocasión xa presentara esta atractiva fórmula ([1], [2])protagonizada por arcotanxentes, de apariencia completamente inútil. 
$$arctan1+arctan2+arctan3=180$$
Está claro que $arctan1=90-\alpha$, $arctan2=90-\beta$ e que $arctan3=90-\gamma$ de aí que
$$90-\alpha+90-\beta+90.\gamma=180 \Rightarrow \alpha=90-\alpha=\beta+\gamma$$

11, As arcocotanxentes
Teño que confesar que esta solución é esencialmente igual á anterior, pero apetecíame introducir un este termo practicamente desaparecido da linguaxe matemática: arcocotanxente. Veremos que non é a derradeira vez que o utilice pois a iso estará adicada a seguinte entrada deste blogue.

$\alpha=arctan\left ( a \right ) \Rightarrow 90-\alpha=arccot\left (  a \right )$ polo tanto $arctan\left (a  \right )=90-arccot\left (   a\right )$
Recollo outra vez a atractiva fórmula do apartado anterior 
$$arctan1+arctan2+arctan3=180$$
E escríboa en función de arcocotanxentes para obter unha nova e non menos atractiva fórmula:
$$\left (\Rightarrow  90-arccot1 \right )+\left (\Rightarrow 90-arccot2  \right )+\left (\Rightarrow  90-arccot3 \right )=180\\arccot1+arccot2+arccot3=90$$
Pero resulta que $arcotan1=\alpha$, $arcotan2=\beta$ e $arcotan3=\gamma$, o que significa que $\alpha+\beta+\gamma=90$, que era o que queriamos demostrar.

luns, 14 de novembro de 2022

Tres cadrados, moitas solucións.1

Martin Gardner, no seu libro Circo matemático (Alianza Editorial) preséntanos o seguinte problema que lle chegou por carta indicando que llo propuxeran ao remitente en 5º de Primaria nunha escola de Moscú.

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$


Gardner non se limita a ofrecernos o problema e a súa solución, senón que ofrece referencias interesantes e cargadas de información sobre todo o que escribe. Entre elas comenta que nun artigo da revista Journal of Recreational Mathematics chegaron a recompilarse 54 solucións deste problema. Non sei cales eran esas solucións. Con todo vou intentar ofrecer unha pequena colección delas, algunha realmente sorprendente. Invito ao eventual lector que intente abordar o problema antes de ir directamente ao listado de solucións pois estamos diante dunha cuestión que nos ofrece moitas vantaxes. É simple, facilmente tratable e permite que enchamos páxinas de debuxos bos de trazas.
Antes de nada, unha pequena anotación. Está claro que $\alpha=45$, polo que o problema é equivalente a demostrar que $\alpha+\beta+\gamma=90$

1. Solución trigonométrica
Martin Gardner pedía que se resolvese o problema usando só xeometría moi elemental, sen facer uso da trigonometría. Eu non lle fixen caso pois a primeira solución que me veu á cabeza foi a seguinte.
$$tan\left ( \beta +\gamma  \right )=\frac{tan\beta +tan\gamma }{1-tan\beta \cdot tan\gamma }=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot \frac{1}{3}}=1=tan\alpha $$
Como os tres ángulos son agudos tamén se verificará que $\alpha=\beta+\gamma$
Aquí aplicouse a fórmula da tanxente dunha suma. Unha alternativa sería usar a do seno ou a do coseno dunha suma. Así teriamos outras dúas novas solucións.

2. Solución de Gardner.
$\beta'=\beta$ por seren ángulos homólogos de triángulos semellantes. A suma $\beta'+\gamma$   é 45, a medida do ángulo $\alpha$

3. Un triángulo isóscele
Construíndo un triángulo isóscele podemos ver inmediatamente que $\alpha+\beta+\gamma=90$
4. Un xiro
Se xiramos o esquema inicial un ángulo $\beta'=|beta$ no sentido antihorario arredor do vértice superior O, podemos observar nese vértice como os tres ángulos suman 90


5. Ángulo exterior dun triángulo
O triángulo OPS é semellante a OTU. É evidente que $\gamma=\gamma'$
$\alpha$ é o ángulo exterior do triángulo OQR, de aí que $\alpha=\beta+\gamma'=\beta+\gamma$

Como esta entrada xa está resultando o suficientemente longa, vou deixar para outra as solucións que me pareceron máis atractivas.

xoves, 3 de novembro de 2022

Catro resultados elegantes

Noutra ocasión troxéramos por este espazo unha fórmula que non dubidaría en cualificar de elegante:

Resultado 1. $arctan1+arctan2+arctan3=180$

A súa demostración déixanos sen palabras:

Este resultado pode promovernos unha atractiva sospeita. Como os ángulos suman 180º, quizais tamén se verifique que

Resultado 2. Existe un triángulo con ángulos que teñen tanxentes 1, 2 e 3

Bastará con amosalo

E quizais engadir unha pequena aclaración: $$tan\beta =tan\left ( \alpha '+\gamma ' \right )=\frac{tan\alpha '+tan\gamma '}{1-tan\alpha 'tan\gamma '}=\frac{1+\frac{1}{3}}{1-1\cdot \frac{1}{3}}=2$$

Como veremos, este xentil triángulo non é un triángulo máis. Ten un rasgo distintivo que destacaron nun enunciado dun problema da LXV Olimpíada Matemática de Moscú no 2002. Recollémolo do libro La matemática elegante (URSS 2005) nesta versión:

Resultado 3. Se as tanxentes dos ángulos dun triángulo son números naturais, entón serán iguais a 1, 2 e 3.

Xa sabemos que esta afirmación ten sentido porque acabamos de ver un triángulo con ángulos de tanxentes 1, 2 e 3. Quédanos por verificar a súa unicidade. Partiremos de que as tanxentes dos ángulos $\alpha$, $\beta$ e $\gamma$ son os números naturais $a$, $b$ e $c$. Como $180-\gamma=\alpha+\beta$

$$tan\left ( 180-\gamma  \right )=tan\left ( \alpha +\beta  \right )=\frac{tan\alpha +tan\beta }{1-tan\alpha \cdot tan\beta }=\frac{a+b}{1-ab}=-c$$

De aí que $a+b+c=abc$

Curiosamente o resultado 3, de apariencia estritamente trigonométrica, é equivalente ao seguinte, eminentemente aritmético:

Resultado 4. Se a suma de tres naturais coincide co seu produto, serán o 1, o 2 e o 3.

Sen perda de xeneralidade consideremos que $a\leq b\leq c$

Se $a=1$: $1+b+c=bc$

$1+b=bc-c=c\left (  b-1\right ) \Rightarrow c\mid \left ( b+1 \right )$ como $c\geqslant b$ necesariamente $c=b+1$. Daquela $b-1=1$, polo que $b=2$ e $c=3$.

Consideremos agora o caso de que $a\geqslant 2$. Entón $b\geqslant 2$ 

Como $a+b+c\geqslant abc\geqslant 4c$ temos que $a+b\geqslant 3c$

Como $c+c\geqslant a+b\geqslant 3c$ temos que $2c\geqslant 3c$ entón $1\geqslant c$, o que é imposible pois $c\geqslant a\geqslant 2$. 

Xa que logo concluímos que só hai unha posibilidade, a de que $a=1$, $b=2$ e $c=3$.

venres, 21 de outubro de 2022

Intuición esganada cunha corda

Hai algunhas cuestións que nos chaman moito a atención por daren lugar a resultados sorprendentes, e se os cualificamos de sorprendentes é porque desafían a nosa experiencia ou a nosa intuición. Ese é o caso do problema do "cinto da Terra" que xa tratamos noutra ocasión ao recoller un artigo de Jaime Poniachik na revista Cacumen. A cuestión era a seguinte:

O cinto da Terra. Imaxinemos un cordel cinguido á Terra sobre o ecuador. Se lle engadimos un metro, vai quedar algo folgado, canto? Axustemos agora outra o cordel arredor dunha laranxa e despois agregámoslle tamén un metro. O sorprendente é que agora a folgura do cinto da laranxa coincide coa da Terra.


A explicación é ben simple. A lonxitude da corda inicial é 2πr. Se lle engadimos un metro a nova lonxitude será $$2\pi r+1=2\pi \left ( r+\frac{1}{2\pi } \right )$$

polo que o raio da corda extendida supera en 1/2π unidades ao raio da circunferencia inicial independentemente do valor do raio. No caso que nos ocupa, como incrementamos a lonxitude nun metro, o raio aumentaría uns 16 cm tanto no caso da Terra como no da laranxa. Se nos pediran un valor para este problema antes de ver a solución seguramente aventurariamos unha cantidade milimétrica pois,a priori, dá a impresión de que engadir un metro a unha cantidade tan desproporcionadamente maior como a da circunferencia terrestre (uns 40 000 km) vén sendo tanto como non engadir nada. 

Tratemos agora un problema cunha fasquía moi semellante. Segundo conta Zhúkov no seu libro El omnipresente número π (Editorial URSS, 2004), o profesor Anatoli  Dimítrievich Myshkis tivo a simpática idea de propoñer o seguinte problema nunha das súas clases:

Tíralle da corda. Supoñamos que o globo arredor do globo terráqueo se cingue unha corda inextensible. Despois de alongala un metro, tómase a corda por un punto e levántase da superficie da Terra ata a maior altura posible. Determínese esa altura.

O ideal sería que o lector ofrecese unha resposta, mesmo a escribise antes de seguir lendo a solución a esta espiñenta cuestión e que recollo esencialmente do citado libro.


Sexa OA=OC=OC'=R o raio terrestre, AB=a, AC=h e α=∠AOB. De todas estas cantidades só coñecemos R. O triángulo AOB é rectángulo en A, de aí que $$tan\alpha =\frac{a}{R}\quad\quad [1]$$

Aplicando o teorema de Pitágoras:$$\left ( R+h \right )^{2}=R^{2}+a^{2}\\R^{2}+2Rh+h^{2}=R^{2}+a^{2}$$

 Operando queda esta ecuación de segundo grao en h: $$h^{2}+2Rh+-a^{2}=0\\h=\frac{-2R\pm \sqrt{4R^{2}+4a^{2}}}{2}=-R\pm \sqrt{R^{2}+a^{2}}$$

Tomando o resultado positivo e despois multiplicando e dividindo por R:  $$h=\sqrt{R^{2}+a^{2}}-R=R\left [ \sqrt{1+\left ( \frac{a}{R} \right )^{2}} -1\right ]\quad\quad [2]$$

Só nos quedaría determinar $a$, ou neste caso,$\frac{a}{R}$. A cuestión non é simple. Teremos que ir máis alá da manipulación alxébrica e botar man de resultados do cálculo diferencial.

A lonxitude, en radiáns, do  arco AOC é $\pi \alpha$ e a da semicircunferencia CC' é $\pi R$, polo tanto o a medida do arco AC'  será a súa diferenza $\pi R-\pi \alpha $. A lonxitude da corda desde B, pasando por A ata C':$$a+\pi R-\pi \alpha =\frac{2\pi R+1}{2}=\pi R+\frac{1}{2}$$

Simplificando esta expresión e dividindo por R:$$\frac{a}{R}-\frac{R\alpha }{R}=\frac{1}{2R}\\ \alpha =\frac{a}{R}-\frac{1}{2R}$$

Substituíndo en [1]:$$tan \left ( \alpha \right ) =tan\left ( \frac{a}{R}-\frac{1}{2R} \right )=\frac{a}{R}\quad\quad [3]$$

Como $\alpha$ ten un valor moi pequeno e unha boa aproximación da tanxente na veciñanza do cero é a serie de Taylor temos que $$tan \left ( \alpha \right ) = \alpha +\frac{1}{3}\alpha ^{3}++\epsilon$$

Aplicando esta relación a [3] temos que $$\frac{a}{R}-\frac{1}{2R}+\frac{1}{3}\left ( \frac{a}{R}-\frac{1}{2R} \right )^{3} +\epsilon =\frac{a}{R}$$

$$\left ( \frac{a}{R} -\frac{1}{2R}\right )^{3}=\frac{3}{2R}-3\epsilon \\\frac{a}{R} -\frac{1}{2R}=\sqrt[3]{\frac{3}{2R}-3\epsilon}$$

Como comparativamente os valores de $\frac{1}{2R}$ e $3\epsilon$ son moi pequenos podemos establecer a seguinte aproximación $$\frac{a}{R}\approx \sqrt[3]{\frac{3}{2R}}$$

Que podemos substituír en [2] para finalmente poder achar o buscado valor de h: $$h\approx R\left [ \sqrt{1+\left ( \sqrt[3]{\frac{3}{2R}} \right )^{2}}-1 \right ]$$

Como valor de R tomarei o dado pola definición de metro da Academia Francesa: o metro é a dez millonésima parte dun cuadrante de meridiano, isto é, que a circunferencia da Terra será de 40 millóns de metros. É certo que agora sabemos que a Terra non é esférica e que posteriormente aos traballos de medición do meridiano redefiniuse o metro e axustáronse as medidas reais do globo terráqueo. A suposición dun planeta perfectamente esférico e a escolla deste valor para o raio quizais sexa tan romántica como o propio enunciado do teorema. De todas formas non inflúe no resultado final. Para poder achalo na última fórmula non nos serve a calculadora, temos que botar man dunha folla de cáculo ou do Wolphram Alpha. O resultado final é o inesperado valor h≈121 m

Agora que temos destrozada a intuición quizais poidamos abordar con mellor disposición a seguinte proposta que recollo do mesmo artigo de Poniachik nomeado anteriormente e que é unha adaptación dun problema referido por Ross Honsberger no libro The Mathematical Gardner (David A. Klamer, 1981). 

O riel dilatado. Consideremos un riel recto AB de 500 metros de lonxitude fixado nos extremos. A calor do verán prodúcelle unha dilatación de 2 metros, observándose unha xoroba de altura x. Estímese este valor se a dilatación é simétrica.

Como na cuestión anterior pídese unha resposta baseada na intuición antes de ter a tentación de botarlle un ollo á resposta. Comprobaremos ademais que esta proposta resulta moi acaída para ser tratada nun curso da ESO.

Xa que nos piden unha estimación imos considerar que a dilatación está formada por rectas. Así teremos dous triángulos rectángulos de catetos 250 e x cunha hipotenusa de 251 metros. Apliquemos o teorema de Pitágoras (e de paso, repasemos as chamadas identidades notables).$$x=\sqrt{251^{2}-250^{2}}=\sqrt{\left ( 251+250 \right )\left ( 251-250 \right )}=\sqrt{501}$$

Creo que nin cómpre unha calculadora para decatarse de que o riel alcanzou unha altura de case 71 m.