mércores, 28 de decembro de 2022

Catro problemas aritméticos

Sei que en distintos momentos teño visto os problemas que vou presentar pero nunca os vira todos xuntos ata que os vin nun capítulo do libro Compreender os números na matemática escolar, de Hung-Hsi Wu (Porto Editora 2017) , editado en colaboración coa Sociedade Portuguesa de Matemática (SPM). O texto parte da preocupación do autor por como se lle ensinan os números aos nenos durante a educación primaria e secundaria. A tese principal é que o profesorado debe coñecer, e en boa medida dar a coñecer, os números como un sistema ben fundamentado en definicións precisas e traballado con regras lóxicas. Entende que non se lle poden ofrecer aos estudantes visións dos números confusas e incoherentes. Por exemplo, se se lles presenta aos alumnos o concepto de fracción como un pedazo de pizza, que sentido terá pedirlles despois que multipliquemos dous pedazos de pizza?

Hung-Hsi Wu considera que debemos coñecer as razóns de calquera resultado, aínda que non sexa posible explicarllo en toda a súa profundidade aos alumnos. Poñamos un caso crítico, o produto de números negativos. Por que $\left ( -n \right )\left ( -m \right )=nm$? 

Primeiro xustificaremos que $\left ( -1 \right )\left ( -1 \right )=1$. Comecemos sumándolle $-1$

$-1+\left ( -1 \right )\left ( -1 \right )=$             como $1$ é o neutro do produto

$-1\cdot 1+\left ( -1 \right )\left ( -1 \right )=$             aplicando a propiedade asociativa

$-1\cdot \left ( 1+\left ( -1 \right ) \right )=$             tendo en conta que $1$ e $-1$ son inversos para a suma

$ -1\cdot 0=0$             finalmente aplicamos que o produto por $0$ sempre dá $0$

Así temos que $-1+\left ( -1 \right )\left ( -1 \right )=0$ polo que $\left ( -1 \right )\left ( -1 \right )=1$ pois ten que ser o oposto de $-1$.

Vexamos agora, aplicando a propiedade distributiva, que $-1\cdot \left ( -m \right )=m$

$$-1\cdot \left ( -m \right )=-1\cdot \left ( \left ( -1 \right ) +...^{(m}...+\left ( -1 \right )\right )= \\=\left ( -1 \right )\left ( -1 \right )+...^{(m}...+\left ( -1 \right )\left ( -1 \right )=1+...^{(m}...+1=m$$

Finalmente veremos que $\left (-n  \right )\left (  -m\right )=mn$ aplicando outra vez a propiedade distributiva

$$\left (-n  \right )\left (  -m\right )=\left ( \left ( -1 \right ) +...^{(n}...+\left ( -1 \right )\right )\left ( -m \right )=\\=\left ( -1 \right )\left ( -m \right )+...^{(n}...+\left ( -1 \right )\left ( -m \right )= m+...^{(n}...+m=nm$$

Calquera, un pouco afeito a traballar con este tipo de razoamentos observará que o presentado aquí está construído no ar: está xustificada a propiedade distributiva de números enteiros?, onde se demostrou que o produto dun número enteiro por $0$ sempre dá $0$?, e o resultado de que $x+(-1)=0\Rightarrow x=1$?... Efectivamente, este tipo de deducións necesitan montar un edificio ben estruturado e fundamentado. Iso é o que fai Hung-Hsi Wu nese libro. Quizais noutra ocasión comente con máis vagar estas ideas. Agora paso a recoller o que el chama "problemas interesantes". Veremos que, aínda que só cómpre saber sumar, restar, multiplicar e dividir, tamén se precisa unha capacidade de comprensión e reflexión de certa profundidade.


Problema 1. O Paul viaxou na moto ata Lanterntown a unha velocidade constante de 15 quilómetros por hora. Para a viaxe de volta decidiu aumentar a velocidade (aínda constante) a 18 quilómetros por hora. Cal foi a velocidade media da viaxe de ida e volta?


Problema 2. Un tren deprázase entre dúas cidades a velocidade constante. Se aumentase a velocidade nun terzo, en que porcentaxe se reduce o tempo da viaxe?


Problema 3. O 99% do peso duns pepinos frescos está constituído por auga. 300 quilos deses cogombros foron almacenados durante un tempo, así que cando foron postos á venda evaporárase parte desa auga resultando que o peso en auga era dun 98%. Canto pesarán estes cogombros parcialmente deshidratados?


Problema 4. Disponse dunha xerra de viño e unha cunca de auga. Retírase da cunca unha culler de auga e bótase na xerra de viño. A mestura reméxese ben e, de seguido, unha culler da mestura bótase na cunca. Haberá máis auga na xerra que viño na cunca ou viceversa? Resolve tamén o problema sen supoñer que a mestura fose remexida. 

Ningún comentario:

Publicar un comentario