Amosando publicacións coa etiqueta problema. Amosar todas as publicacións
Amosando publicacións coa etiqueta problema. Amosar todas as publicacións

martes, 12 de agosto de 2025

Teorema de Hall. Aplicacións.

 Xa levamos varias entradas dándolle voltas ao seguinte resultado.

Teorema do matrimonio de Hall. Dado un grafo bipartito $G=(X,Y)$, unha condición necesaria e suficiente para que $X$ teña un emparellamento perfecto (condición de Hall) é que  $\forall A\subset X$ se verifique que $ \left| A \right|\le \left| N\left( A \right) \right|$

Xa vimos como se podía aplicar ao establecemento de trucos de maxia ou á resolución do problema do matrimonio. Agora toca aplicalo a novos problemas.

Unha carta de cada valor. Colocamos as 40 cartas dunha baralla española en 10 columnas de 4 cartas. Poderemos sempre, escollendo unha carta de cada columna, obter todos os valores (do as ao rei)?

Na seguinte imaxe temos un exemplo. Podes comprobar que neste caso si que podemos escoller unha carta de cada columna.


No exemplo da imaxe podemos coller de dereita a esquerda 1, 2, 3, 4, 5, 6, 7, Sota, Rei e Cabalo. A cuestión, claro, é se sempre é posible. 

Para iso establecemos un grafo bipartito. Por unha banda temos os 10 vértices que nos representan os 10 valores das cartas: 1, 2, 3, ,4 5, 6, 7, S, C, R. Por outra os 10 vértices que representan os 10 montóns $m_{1},m_{2},...,m_{10}$. Conectamos cada montón con todos os valores que conteña. Dado un subconxunto $A$ calquera de $k$ valores teremos  a súa veciñanza $ N\left( A \right) $  isto é, o conxunto de vértices (montóns) que están conectados con algún dos vértices de $A$. Supoñamos que $\left| N\left( A \right) \right|\lt k$. Isto significa que hai como moito $k-1$ montóns que conteñen as $4k$ cartas representadas por $A$. Pero en $k-1$ montóns só hai $4k-4$ cartas! De aí que a suposición que fixemos debe ser falsa. A conclusión é que se verifica a condición de Hall para calquera colección de valores: $\left| A \right|\le \left| N\left( A \right) \right|$. De aí que sempre poidamos establecer un emparellamento perfecto entre valores e montóns. Ademais este razoamento é completamente xeral polo que tamén é valido no caso de que quixeramos escoller os 13 valores distintos dunha baralla francesa distribuídos nunha matriz $4 \times 13$. Quizais sobra dicilo, pero tamén é factible escoller sempre unha carta de cada pau collendo unha carta de cada fila. Claro que esta posibilidade preséntase como menos espectacular.

Sempre gañadores

O seguinte problema ten certo empaque. Apareceu na competición Putnam do ano 2012

Sempre gañadores. $2n$ equipos xogan un torneo de todos contra todos. Durante $2n-1$ días cada equipo xoga exactamente contra un adversario distinto. Non hai empates.

Demostra que podemos escoller un equipo gañador diario sen que repitamos ningún equipo dúas veces.

O razoamento terá moitas concomitancias co anterior. Realizarémolo por redución ao absurdo. Comezamos establecendo un grafo bipartito con $2n-1$ vértices representando a cada un dos dos días do torneo e  outros $2n$ vértices identificando cada un dos equipos participantes. As arestas unen cada equipo cos días nos que gaña.

Razoaremos por redución ao absurdo. Supoñamos que non hai un emparellamento perfecto. Daquela non se verificará a condición de Hall e existirá un subconxunto $A$ de $k$ días tal que $\left| N\left( A \right) \right|\lt k$: neses días hai menos de $k$ gañadores. Velaí que haberá un xogador que perdeu todos os partidos durante eses $k$ días. Pero isto asegura que debe haber $k$ equipos gañadores diferentes nese período. Xa obtivemos a contradición.

Agochado no enunciado hai outro problema, o de establecer un calendario para unha liga na que $2n$ equipos xoguen todos contra todos. Pódese facer? Como? A pouco que un o pense decatarase de que é posible realizala, e de moitas maneiras distintas. No libro de Oystein Ore, Graphs and their uses (MAA 1990) ofrécese unha solución para o caso xeral.

luns, 18 de novembro de 2024

Problemas chegados desde Moscú. 3

Esta é a terceira e última entrada adicada a recoller problemas de Boris Kordemsky. As anteriores pódense consultar aquí e aquí.

Imos cun problema moi simple. Con todo moita xente dirá que lle faltan datos.

Un barco diésel e un hidroavión. Un barco diésel parte de viaxe. Cando está a 180 millas da costa envíase un hidroavión co correo que ten unha velocidade dez veces superior á do barco. A que distancia alcanza o barco?

O encantador do seguinte problema é que a pregunta é inesperada

En coche e a cabalo. Un mozo e un home maior saen da vila cara a cidade; un vai a cabalo e outro en coche. Pronto queda claro que se o home maior chegase tres veces máis lonxe de onde está, quedaríalle a metade para viaxar do que lle queda. E se o mozo viaxara a metade do que xa fixo, quedaríanlle tres veces máis para viaxar do que lle queda. Quen vai a cabalo?

Sei que non hai que recorrer á combinatoria para resolver a seguinte cuestión. Con todo, desde que o coñecín coloqueino entre os problemas a resolver cando trato na clase as técnicas de reconto combinatorio.

Novas estacións. Cada estación vende billetes a todas as outras estacións do percorrido. Cando se engaden algunhas estacións hai que imprimir 46 billetes adicionais. Cantas estacións se engadiron? Cantas había antes?

Teño preferencia polos problemas de matemáticas sen referencias externas. Matemáticas para estudar as propias matemáticas. Dentro deste ámbito está o estudo do propio sistema de numeración. Quizais o pouco traballo/reflexión sobre o sistema decimal, quizais a propia abstracción deste tipo de cuestións, o certo é que normalmente vólvenselle moi dificultosas ao alumnado.

Un número de cinco díxitos. Dime un número de cinco díxitos tal que se lle engades un 1 despois do mesmo é tres veces maior que se llo engades antes.

Cando un se enfronta ao seguinte enunciado cómprelle unha gran dose de imaxinación. Temos un avión, unha motocicleta e un cabalo andando dun lado para outro. O curioso é que non nos dan ningunha velocidade.

O motociclista e o xinete. Envían un motociclista desde a oficina de correos a tempo para a chegada dun avión ao aeroporto. O avión chega antes de tempo e o correo é transportado á oficina de correos a cabalo. Despois de media hora o xinete crúzase co motociclista e dálle o correo. A motocicleta volve á oficina de correos 20 minutos antes do esperado. Cantos minutos antes aterrizou o avión?

O tradutor do libro ao inglés, Albert Perry, especialista en ruso da Colgate University, fixo unha curiosa anotación ao seguinte problema:" Non hai árbores de nadal na URRS, oficialmente só os hai de aninovo". En canto ao contido, é un clásico.

Regalos de aninovo. O noso comité executivo do sindicato xestionou unha árbore de aninovo para os nenos. Despois de distribuir caramelos e galletas en paquetes de regalo, comezamos coas laranxas. Pero decatámonos de que se poñemos 10 laranxas por paquete, un paquete só terá 9, se colocamos 9, un paquete só derá 8; se poñemos 8, 7; e así sucesivamente ata dúas laranxas por paquete cun paquete con só 1. Cantas laranxas temos? 

Para entender os comentarios ao seguinte problema cómpre ler antes o enunciado.

Unha suma palindrómica. Este problema aínda non foi resolto. Suma a un enteiro o propio número invertido. Engade á suma o invertido da suma. Continúa ata que a suma sexa un palíndromo (que se le igual de esquerda a dereita que de dereita a esquerda) $$\begin{matrix} 38 & & 139 & & 48017 & & \\ \underline{83} & & \underline{931} & &\underline{71084} & & \\ 121& &1170 & &119101 & & \\ & &\underline{0711} & & \underline{101911 }& & \\ & & 1881 & & 221012 & & \\ & & & & \underline{210122} & & \\ & & & & 431134 & & \\ \end{matrix} $$

Pode que sexan necesarios moitos pasos. (de 89 a 8.813.200.023.188 precísanse 24 pasos). Unha hipótese é que calquera enteiro produce, antes ou despois, un palíndromo. Segundo Kordemsky, un traballador industrial de Riga chamado P. R. Mols, decatouse de que o número 196, despois de setenta e cinco pasos, non produce un palíndromo. Kordemsky pídenos que no canto de continuar a partir do número de 36 díxitos da septuaxésima quinta suma, intentemos refutar ou demostrar a conxectura mediante un razoamento.

Martin Gardner comenta que xa se realizaran daquela miles de sumas a partir do 196 e que non se achara ningún palíndromo. Tamén informa que a conxectura foi demostrada falsa para os números binarios. Sospéitase que hai números que non darán lugar a un palíndromo. A eses números chámaselles números de Lychrel. En concreto 196 é un candidato destacado para ser un número de Lychrel. É curioso que este tipo de números teñan nome, aínda que non se sabe se realmente existe algún.

luns, 11 de novembro de 2024

Problemas chegados desde Moscú.2

Unha explicación de Perelman

Hoxe en día cando escoitamos o apelido Perelman pensamos inmediatamente en Grigori Perelman (1966-), o matemático ruso que resolveu a conxectura de Poincairé. No entanto, hai un par de décadas o usual sería asociar ese apelido con Yákov Perelman (1882-1942), un famoso divulgador da ciencia que morrería no asedio a Leningrado durante a II Guerra Mundial. 

Nun dos seus libros, Aritmética recreativa, explícanos o método ruso para facer produtos. Faino cun exemplo. Se quixermos calcular o produto de $32\cdot13$ procederiamos da seguinte maneira. En cada paso dividimos o factor da esquerda por $2$ e multiplicamos o da dereita por $2$. Así o produto non varía.

$$\begin{matrix} 32\cdot 13 \\16\cdot 26 \\8\cdot 52 \\4\cdot 104 \\2\cdot 208 \\1\cdot 416 \end{matrix}$$

Velaí que o resultado sería $32\cdot13=1\cdot 416=416$. Claro que, calquera ve enseguida o problema. Neste caso $32$ é unha potencia de $2$ polo que podemos dividilo unha e outra vez pola metade. Pero que pasaría se na columna da esquerda temos un número impar? Yákov Peremal tamén explica como proceder neste caso. Cada vez que teñamos un número negativo, restámoslle $1$; agora podemos dividir por $2$ sen problema. En compensación teremos que sumar todos os números da dereita que teñan un impar á súa esquerda. Para facelo máis sistemático e fácil, tachamos todos os produtos que presenten á esquerda un número par. Poñamos que agora queiramos multiplicar $19\cdot17$:

$$\begin{matrix} 19\cdot 17 \\9\cdot 34 \\4\cdot 68 \\2\cdot 136 \\1\cdot 272 \end{matrix}$$

O resultado será $17+34+272=323$. Por que temos que proceder deste xeito? Perelman tamén nolo explica. Resulta que ao restar $1$ estamos eliminando algúns valores, necesarios para obter o produto final. Todo fica claro cando presentamos as seguintes operacións:

$$\begin{matrix}19\cdot17=\left ( 18+1 \right )\cdot17=18\cdot17+17\\ 9\cdot 34=\left ( 8+1 \right )\cdot 34=8\cdot34+34\end{matrix}$$

Ao restar eses uns estamos subtraendo tamén eses restos, $17$ e $34$; esa é a razón de porque debemos sumalos ao final.

Máis problemas de Kordemsky

Na anterior entrada presentárase unha pequena escolma dos Enigmas de Moscú de Boris Kordemsky. Imos seguir tirando dese fío. Algunha das cuestións presentadas por Perelman teñen un sabor moi semellante ás de Kordemsky. En especial a seguinte, da que, sen que serva de precedente, darei tamén a solución.

O volume dunha botella. Se unha botella parcialmente chea de líquido, ten un cu redondo, cadrado ou rectangular, podes saber o seu volume só cunha regra? Non podes engadir sin sacar líquido.

Está claro que o volume total da botella virá dado pola suma do volume que ocupa o líquido xunto co da parte sen el. Creo que non cómpre dicir nada máis. 

O trato pouco reflexivo cun tópico tan básico como o das porcentaxes dá lugar a interpretacións bárbaras. É habitual escoitar, non xa a rapaces, senón a ilustres licenciados, que se aumentamos unha cantidade nun 20% e despois facemos unha rebaixa do 20%, obtemos o valor inicial.

Podes aforrar o 100%? Un invento aforra o 30% do combustible, outro un 45% e un terceiro un 25%. Se usas todos estes inventos a un tempo, podes aforrar o 100% ? En caso contrario, cal é a porcentaxe de aforro?

Nalgúns casos Kordemsky non só presenta un problema senón que fai unha pequena digresión para chamar a atención sobre algúns procesos propios das matemáticas. Continuamos con porcentaxes.

Falsa analoxía. Os descubrimentos científicos fanse a veces mediante analoxía. A analoxía tamén ten lugar nas matemáticas, pero tamén existe a falsa analoxía.

40 é 8 unidades maior que 32. 40 é un 25% maior que 32.

32 é 8 unidades menor que 40. 32 non é un 25% menor que 40. Cal é a porcentaxe correcta?

a) Supón que os teus ingresos mensuais aumentan un 30%. En canto aumenta o teu poder adquisitivo?

b)Supón que os teus ingresos mensuais non cambian. No entanto, os prezos baixan un 30%. En canto aumenta o teu poder adquisitivo?

c)Cando unha tenda de libros de segunda man fai unha rebaixa do 10% do prezo, obtén unha ganancia do 8% por cada libro vendido. Cal era o beneficio antes da rebaixa?

d)Se un obreiro metalúrxico reduce o seu tempo por peza nun p%. Canto aumenta a súa produtividade?

Un deses enunciados que nunca verás nun libro de texto. Trátase de traballar o volume pero non preguntan polo volume. A última pregunta incide nun dos procesos máis importantes dentro das matemáticas, o da xeneralización.

Que caixa pesa máis?. Unha caixa cúbica contén 27 bólas grandes congruentes; a súa xemelga contén 64 bólas congruentes máis pequenas. Todas as bólas están feitas do mesmo material. Ambas caixas están completamente cheas. En cada caixa, cada capa ten o mesmo número de bólas e as bólas exteriores de cada capa tocan os lados da caixa. Que caixa pesa máis? Intenta con outros números, pero que sexan sempre cubos. Escribe unha conclusión xeral.

O seguinte enunciado ten o atractivo de estar redactado como unha pequena lenda. Trata o tema do pacto co demo, algo que, como todos sabemos, nunca debemos facer. É tamén un deses problemas que convén resolver "ao revés"

O folgazán e o demo. Un folgazán expresa a súa ansia por facerse rico e de súpeto aparéceselle o Diabo quen lle di: "Ben, o traballo que teño para ti é fácil, e serás rico. Ves a ponte? Crúzaa e dobrareiche o diñeiro que tes agora mesmo. De feito, cada vez que a cruces volveri a dobrarche os cartos.

"Non pode ser!" contestou o folgazán

"Só hai unha condición. Xa que son tan xeneroso debes darme 24 € despois de cada cruce".

O folgazán acepta. Cruza a ponte e conta os seus cartos... Miragre! Era o dobre.

Dálle 24 € ao Diabo e volve a cruzar outra vez. Dóbrase o seu diñeiro e paga outros 24€, cruza unha terceira vez. O seu diñeiro volve a duplicarse pero agora só ten 24€ e tan que darllos ao Diabo que desaparace entre gargalladas.

Cando un se enfronta a un enunciado cómpre que o entenda moi ben. Iso significa, entre outros aspectos, que debe ter ben asimilados os conceptos e as relacións que se determinan entre os distintos aspectos en xogo. No seguinte problema xira arredor do cálculo dunha media de velocidades de trancrición dun manuscrito. Debemos ter claro que a velocidade mídese a respecto do tempo, non a respecto do número de páxinas, como enganosamente pretende convencernos Vera.

Vera pasa un manuscrito a máquina. Vera recibe da súa nai o encargo de pasar a máquina un manuscrito. Vera indica que fará unha media de 20 páxinas por día.

A primeira metade fainas con pereza, 10 páxinas diarias. Para recuperar o tempo perdido fai a segunda metade a 30 páxinas por día.

"Ves?, fixen unha media de 20 páxinas por día". Conclúe Vera. "A media de 10 e 30 é 20"

"Non, non é certo" di a súa nai.

Quen ten a razón?

Dicimos que estes problemas chegaron de Moscú porque alí os publicou Kordemsky. En realidade son universais. O seguinte problema con pequenas variantes aparece nalgún libro de Adrián Paenza. 

Que tal vas de enxeño?. Unha lancha sae da beira A ao tempo que outra sae da beira B; móvense polo lago a unha velocidade constante. Encóntrase por vez primeira a 500 metros de A. Continúan o seu camiño, dando a volta na beira oposta. Encóntranse por segunda vez a 300 m. de B. Cal é a lonxitude do lago e cal é a relación entre as velocidades das lanchas? 

Na seguinte entrada remataremos esta serie de problemas de Boris Kordemsky.

luns, 4 de novembro de 2024

Problemas chegados desde Moscú.1

O descoñecemento doutras culturas ou doutras linguas empequenece o noso mundo. Hai factores que nos afastan de realidades distintas á nosa. Un deles pode ser o alfabeto. Unha portada dun libro como o da figura 1 pode significa unha barreira insalvable. Hai outros muros aínda máis infranqueables. Durante a Guerra Fría houbo un bloqueo total a todo o que se elaborase alén do telón de aceiro. Así, un libro de matemática recreativa editado no 1954 cun enorme éxito na URSS non foi coñecido no occidente ata 1972, que foi traducido ao inglés e publicado cunha introdución de Martin Gardner. O título orixinal, Математическая смекалка pasou a ser The Moscow Puzzles. 359 Mathematical Recreations. O autor Boris Kordemsky (1907-1999), un profesor de matemáticas moscovita, editaría máis libros do mesmo estilo. Tamén hai unha versión en español; neste caso a editorial Gedisa cortou o texto en dúas partes: Los enigmas de Moscú e Un elefante y un mosquito.

Vou compartir algúns dos problemas de Kordemsky. 

O libro Mate-glifos (Xerais, 2018) dos profesores da Universidade de Vigo Nicanor Alonso e Miguel MIrás, está elaborado arredor dos símbolos matemáticos. Os símbolos son importantes, incluso poden ser o cerne dun problema.

Distintas operacións, mesmo resultado. Dados un par de 2, o símbolo "+" pode cambiarse por "x" sen cambiar o resultado: $ 2+2=2\times 2$. A solución con tres números tamén é sinxela: $ 1+2+3=1\times 2\times 3$. Pídese a resposta para catro números. E para cinco?

A central eléctria de Tsimilyansk está situada no río Don. Rematada no 1954 considérase como un dos grandes proxectos de construción da época comunista.  A imaxe reflicte a súa icona oficial. Esta central aparece como identificador próximo ao posible lector do seguinte enunciado que presenta dunha forma pouco habitual un problema sobre a media.


Para a central eléctrica de Tsimilyansk. Unha fábria de equipos de medición ten un encargo urxente da célebre central eléctrica de Tsimlyansk. A fábrica conta cunha brigada de dez excelentes traballadores: o capataz (un home maior con experiencia) e 9 xoves diplomados de formación profesional.

Cada un dos 9 xoves traballadores produce 15 pezas de medición ao día mentres que o seu xefe fai 9 máis que a media dos dez traballadores. Cantos instrumentos de medición produce a brigada diariamente?

A primeira vez que lin o problema, fíxeno a todo correr e, en consecuencia lino mal. Unha vez visto o primeiro parágrafo pensei que preguntaría cal é a suma dos primeiros mil millóns de números. Non é esa a pregunta.

De 1 a 1.000.000.000. Cando o acreditado matemático alemán Karl Friederich Gauss(1777-1855) tiña nove anos, pedíronlle que sumara todos os números enteiros do 1 a 100. Sumou rapidamente o 1 co 100, o 2 co 99, e así sucesivamente ata un total de 50 pares de números, todos eles de suma 101. A resposta foi $50\times 101=5050$.

Agora acha a suma de todos os díxitos dos números enteiros de 1 a 1.000.000.000. Isto quere dicir todos os díxitos en todos os números, non a suma de todos os números por si mesmos.

Eu teño unha certa aversións aos deportes e especialmente, polo que representa, ao fútbol. Velaí que, nun principio, non sería do meu gusto un problema enmarcado neste tema. O que si me pareceu moi curiosa foi a forma de presentar o problema, é realmente estraña, mediante unha conversión kafkiana. No libro non vén a imaxe, nin  tampouco se aclara que o que se debe establecer é a relación que debe haber entre os raios das dúas pelotas.

O pesadelo dun afeccionado ao fútbol. A un afeccionado ao fútbol, triste pola derrota do seu equipo, cústalle durmir. No soño, un porteiro practica nunha gran habitación amoblada, lanzando unha pelota contra a parede e despois atrapándoa coas mans. Pero o porteiro cada vez faise máis pequeno e despois transfórmase nunha pelota de pimpón mentres que a pelota de fútbol se incha ata converterse nunha gran bóla de ferro forxado. A bóla de ferro xira violentamente intentando aplastar a pelota de pimpón que se move por todas partes desesperadamente. Pode a pelota de pimpón encontrar un lugar seguro sen separarse do chan?

Dúas pelotas

O seguinte é un problema simple e curioso. Todo un reto para un alumno de 1º da ESO. Un exemplo de como as matemáticas en si mesmas son interesantes. Non precisamos buscar enunciados trapalleiros que introduzan a vida cotiá con calzador e sen xeito.

Fraccións interesantes. Se ao numerador e ao denominador da fracción $1/3$ lles sumamos o seu denominador, $3$, a fracción duplícase.

Acha unha fracción que sexa o triplo cando o seu denominador se sume ao seu numerador e ao seu denominador; acha outra que sexa o cuádruplo.

De seguido unha desas cuestións aritméticas sobre velocidades que dan moito xogo. Claro que non se trata do típico problema de que un tren parte de A a 90 km/h....

Aforraríase tempo? Ostap volve a casa desde Kiiv. Fixo en bici a metade do camiño quince veces máis rápido que a pé. A segunda metade montou nun carro de bois. Camiñando pode ir o dobre de rápido. Aforraríase tempo se fixera todo o camiño a pé? Canto tempo?

Un enunciado distinto ao anterior, pero os fundamentos son os mesmos:

O sarxento propón un problema. O sarxento Semochkin propón o seguinte problema aos soldados exploradores. Digamos que dous de vós cubrides a mesma distancia. O primeiro corre a metade do tempo e camiña a outra. O segundo corre a metade do percorrido e camiña o resto. Ningún dos dous camiña ou corre máis rápido que o outro. Se primeiro camiñan e despois corren, quen chega primeiro?

Na seguinte entrada continuaremos con algunha outra achega deste moscovita.

luns, 13 de novembro de 2023

As entradas do cine e outras cuestións difíciles

Presentamos un problema de apariencia anódina. Así como é facil de comprender o enunciado, a súa resolución non é nada simple. Agora ben, que non sexa simple non significa que non sexa marabillosa, que o é.

As entradas do cine. n+m persoas están nunha cola do despacho do cine; m teñen un billete de 5 € e as outras n só teñen billetes de 10 €. Cada entrada custa 5 €. Na billeteira non teñen ningún tipo de cambio. Se cada cliente compra só unha entrada, cal é a probabilidade de que ningún cliente teña que agardar polo cambio?


Para responder cómpre que teñamos presente a regra da probabilidade de Laplace que nos di que no caso de termos un experimento aleatorio no que todos os sucesos elementais teñen a mesma probabilidade, a probabilidade dun suceso A virá dada polo cociente entre o número de casos favorables a A e o de casos posibles:

$$P(A)=\frac{número\quad de\quad casos \quad favorables\quad a \quad A }{número\quad de\quad casos\quad posibles}$$

O noso propósito é determinar os dous elementos deste cociente. Para facelo colleremos un camiño encantador que recollo do mesmo lugar do que recollín o enunciado do problema, o libro dos irmáns Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. I: Combinational Analysis and Probability Theory

Podemos pensar o problema mediante unha rede de dimensións $m\times n$ colocada sobre un sistema de coordenadas cartesiano. Se lle imos preguntando a cada un dos clientes que tipo de billetes ten, por orde e comezando desde o primeiro da cola, podemos ir elaborando un camiño sobre esta rede cartesiana, partindo do $(0,0)$ e trazando un segmento horizontal dunha unidade por cada persoa que teña 5 € e un segmento unitario vertical por cada unha que teña 10 €. Ao final teremos un segmento poligonal que unirá o $(0,0)$ co punto $(m,n)$. 

figura 1

Recomendo consultar a entrada anterior porque utilizaremos técnicas semellantes ás traballadas alí. En particular, nela víramos que o número total de camiños entre os puntos $(0,0)$ e$(m,n)$ era $\binom{m+n}{n}$, o que nos dá o número de colas posibles. Máis dificultoso será determinar os casos favorables. 

Se trazamos a recta $r$ de ecuación $y=x$, está claro que os camiños favorables serán aqueles, como o trazado na figura 1, que van por debaixo desa recta; son os que representan os casos nos que os clientes non teñen que agardar polo cambio.

Designemos $A_{0},A_{1},A_{2},...,A_{n+m}$ aos vértices consecutivos dun destes camiños, onde $A_{0}=(0,0)$ é sempre o punto inicial e $A_{n+m}=(m.n)$ o final. Que pasa se $m<n$? A figura 2 explícao claramente.

figura 2

Efectivamente, se $m<n$, como no rectángulo da dereita, será imposible alcanzar o punto final mediante un camiño que transcorra por debaixo de $r$. Nese caso a probabilidade será nula. Pasemos a considerar o outro caso, no que $m>n$.

Agora, no canto de facer o reconto dos camiños favorables, contabilizaremos os desfavorables. Para iso vainos ser de axuda a recta $r':y=x+1$. Calquera camiño desfavorable debe ter un punto sobre esa recta. Sexa $A_{k}$ o primeiro punto dun deses camiños. Centrémonos agora no primeiro tramo do camiño, o que vai desde a orixe ata $A_{k}$, isto é, o tramo $A_{0},A_{1},...,A_{k-1},A_{k}$ e construamos o seu simétrico respecto de $r'$. Será $A'_{0},A'_{1},...,A'_{k-1},A_{k}$, onde $A'_{0}=(-1,1)$.

figura 3

Mediante esta construción, para cada camiño desfavorable $A_{0},A_{1},...,A_{k-1},A_{k},...A_{n+m}$ podemos construir un novo camiño $A'_{0},A'_{1},...,A'_{k-1},A_{k},...A_{n+m}$ que comeza en $A'_{0}=(-1,1)$. De aí que contabilizar todos os camiños desfavorables equivale a contabilizar todos os que teñen a súa orixe en $A'_{0}$. Estes terán $m+1$ segmentos horizontais e $n-1$ segmentos verticais que son $\binom{m+n}{n-1}$. Polo tanto o número de casos favorables obterase mediante a resta

$$\binom{m+n}{n}-\binom{m+n}{n-1}=\frac{\left ( m+n \right )!}{n!\cdot m!}-\frac{\left ( m+n \right )!}{\left ( n-1 \right )!\cdot \left ( m+1 \right )!}=\\=\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}$$

Para obter a probabilidade pedida no problema teremos que dividir este valor polo número de casos posibles:

$$\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}:\binom{m+n}{n}=\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}:\frac{\left ( m+n \right )!}{m!\cdot n!}=$$ $$=\frac{\left ( m+n\right )!\left ( m+1-n \right )m!\cdot n!}{n!\cdot \left ( m+1 \right )!\left ( m+n \right )!}=\frac{m+n-1}{m+1}$$

Pode que haxa  obras de arte que nos ofrezan tanta beleza como a que se transmite nestas liñas, pero non serán moitas.

Máis alá.

No mencionado libro dos xemelgos Yalgom van maís alá. Dan unha demostración deste mesmo resultado por indución e outra usando os mesmos camiños que os trazados na que se presentou aquí, pero imaxinando agora que son esqueiras e que incide sobre elas a luz do sol cunha inclinación de 45º. 

Ademais os Yaglom propoñen outras variantes deste mesmo problema. Nunha delas piden que supoñamos que no despacho do cine teñen p billetes de 5€. Noutra piden que resolvamos un problema semellante ao ofrecido aquí pero partindo do suposto de que houbese billetes de 3 €:

As entradas do cine con billetes de 3 €. n+m persoas están nunha cola do despacho do cine; m teñen un billete de 1 € e as outras n só teñen billetes de 3 €. Cada entrada custa 1 €. Na billeteira non teñen ningún tipo de cambio. Se cada cliente compra só unha entrada, cal é a probabilidade de que ningún cliente teña que agardar a que na billeteira teñan cambio?

E aínda máis. Explícase como a solución do problema pode aplicarse para resolver este outro, ben complexo:
Cordas sen interseción. Márcanse 2n puntos sobre unha circunferencia. De cantas formas poden unirse en n pares de tal xeito que as cordas de formadas  non se intersequen entre si?
A partir disto Yaglom e Yaglom explican como se pode obter a solución á seguinte e difícil cuestión, discutida por Euler no 1751 nunha carta a Golbach:
Triangulacións. De cantas formas se pode triangular un n-ágono convexo?

luns, 6 de novembro de 2023

A identidade do pau de hóckey e outros diagramas sobre números combinatorios

Posiblemente a mellor forma de introducir un novo tema na aula, nun libro ou nun blogue coma este sexa mediante un problema. Neste caso trátase dun problema moi coñecido pero que a un alumno de secundaria lle pode supoñer todo un reto.

Paseos por unha cidade ortogonal. Nunha cidade as rúas son todas perpendiculares entre si formando unha rede de 5х3 bloques. Pídese obter todos os camiños que conectan os puntos A e B.


Para mergullarse no problema cómpre experimentar algo con el trazando distintos camiños. Na seguinte imaxe podemos ver dous deles, un en negro e outro en azul. 

Só nos podemos mover en dúas direccións, ou ben en horizontal (que identificaremos coa letra $x$), ou ben en vertical (que designaremos por $y$). Así o camiño negro poderíase nomear coa 8-tupla $(x,x,x,x,x,y,y,y)$ e o camiño azul mediante a 8-tupla $(y,x,y,x,x,x,y,x)$. Por pouco que continuemos xogando con este reto non tardaremos en decatarnos que calquera camiño constará de 5 $x$ e 3 $y$. 
Se sabemos algo de combinatoria recoñeceremos que o problema do reconto dos camiños como un caso típico das permutacións con repetición. Quen queira repasar en que consisten pode consultar outra entrada deste blogue dedicada a esta cuestión, Camões e as permutacións con repetición
Nesta ocasión trátase de obter todas as 8-tuplas formadas por dous elementos nas que o primeiro, $x$ se repite 5 veces e o segundo, $y$, repítese 3 veces. En termos combinatorios estamos diante dunha permutación con repetición:
$$PR_{8}^{5,3}=\frac{8!}{5!\cdot 3!}=56$$

Outro camiño e xeneralización
Aínda se podería abordar o problema desde outra perspectiva. Fagamos o reconto do número de camiños que hai ata chegar a un determinado vértice. Obsérvase claramente que tanto pola base horizontal como pola altura esquerda vertical do rectángulo só pode haber un camiño que nos leve a cada un dos vértices da rede. Ademais, para obter o número de camiños dun vértice calquera bastará sumar os que nos levan aos vértices inmediatamente anteriores (o situado á esquerda e o situado abaixo) tal e como se indica na seguinte imaxe.
1+2=3 (cousa inusitada)


Pero este é o mesmo procedemento polo que obtemos os elementos do triángulo de Pascal!, de aí que se continuamos calculando o número de camiños que hai a cada vértice obteremos os números combinatorios, onde cada fila do triángulo de Pascal agora aparece como unha diagonal.

Se identificamos os puntos da rede mediante as súas coordenadas cartesianas $(m,n)$ os elementos de cada diagonal son aqueles que teñen a mesma suma. Por exemplo, os vértices da última diagonal representada na anterior imaxe teñen coordenadas que suman 5. Ademais o número de camiños ata ese vértice vén dado polo número combinatorio $$\binom{m+n}{n}=\frac{\left ( m+n \right )!}{m!\cdot n!}=PR_{m+n}^{m,n}$$

Por fin a identidade do pau de hóckey

Por fin chegamos ao que motivou esta entrada, que non foi outra cousa que un resultado que recollo do libro dos xemelgos Akiva M. Yaglom e Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. I: Combinational Analysis and Probability Theory. Demostraremos unha fórmula usando o mesmo tipo de diagramas que os que estivemos usando ata o momento.
Consideremos unha rede de dimensións $m-n+1\times n$ e poñámonos a contar camiños desde a orixe


Polo explicado anteriormente sabemos que hai un total de $\binom{m+1}{n}$ camiños distintos. Fagamos agora o reconto doutro xeito. Primeiro movámonos un paso en horizontal e consideremos todos os camiños que parten de $(1,0)$ e chegan a $(m-n+1,n)$. Aplicando a fórmula coñecida vemos que hai un total de $\binom{m}{n}$. Despracémonos agora un paso en vertical ata o $(0,1)$ e despois outro en horizontal ata o $(1,1)$ e desde aquí contabilizaremos ata $(m-n+1,n)$ un total de $\binom{m-1}{n-1}$. Continuemos subindo ata o punto $(1,2)$ e, despois de volver a desprazarnos en horizontal chegaremos ao punto $(2,2)$. Desde aquí ata o extremo superior haberá un total de $\binom{m-2}{n-2}$. Creo xa se está vendo o procedemento para facer este segundo reconto.
Continuaremos deste xeito ata alcanzar o punto $(1,n)$, lugar desde o que hai un total de $\binom{m-n}{0}$ camiños. Finalmente, a suma de todos estes recontos debe coincidir co total de camiños que hai desde o $(0,0)$, de aí a fórmula:
$$\binom{m+1}{n}=\binom{m}{n}+\binom{m-1}{n-1}+\binom{m-2}{n-2}+,,,+\binom{m-n}{0}\quad \quad [1]$$
Fagamos o exercicio de aplicala ao caso $m=7$ e $n=3$.
$$\binom{8}{3}=\binom{7}{3}+\binom{6}{2}+\binom{5}{1}+\binom{4}{0}$$
En números: $56=35+15+5+1$ ten unha curiosa representación sobre o triángulo de Pascal

Identidade do stick de hóckey levóxira

O diagrama que se forma aseméllase a un stick de hóckey.
Xa que temos un triángulo de Pascal á vista, é fácil de recoñecer a súa simetría. Podemos percorrer cada unha das súas filas de esquerda a dereita ou de dereita a esquerda, o resultado é o mesmo. Esta propiedade descríbese coa fórmula
$$\binom{m}{n}=\binom{m}{m-n}$$
Apliquémoslle este resultado a todos e cada un dos números combinatorios da fórmula [1]:
$$\binom{m+1}{m+1-n}=\binom{m}{m-n}+\binom{m-1}{m-n}+\binom{m-2}{m-n}+...+\binom{m-n}{m-n}$$
Substituíndo $m-n=k$ teremos:
$$\binom{m+1}{k+1}=\binom{m}{k}+\binom{m-1}{k}+\binom{m-2}{k}+...+\binom{k+1}{k}+\binom{k}{k}\quad\quad [2]$$
Esta fórmula, [2], que se coñece domo identidade do pau de hóckey, aínda que [1] merece tamén este nome. Para ilustrala imos considerar o caso $m=7$ e $k=2$:
$$\binom{8}{3}=\binom{7}{2}+\binom{6}{2}+\binom{5}{2}+\binom{4}{4}+\binom{3}{2}+\binom{2}{2}$$
Calculando os valores deses números combinatorios a identidade viría sendo $56=21+15+10+6+3+1$
Identidade do stick de hóckey destróxira

Epílogo
Non é esta a primeira vez que aparece a identidade do pau de hóckey neste blogue, xa se usara noutra ocasión para eludir o paso máis complicado da solución dada por Euler ao problema do xogo do recontre.
Problema do recontre. Dúas persoas, A e B, cunha baralla completa cada unha, sacan a un tempo cada súa carta. Se extraen a mesma carta gana A. Se repiten a operación ata esgotar todas as cartas e nunca coinciden, ganará B. Pídese a probabilidade de que gane cada un dos xogadores.
Daquela a identidade aparecía baixo a seguinte expresión:
 $$\sum_{i=k}^{n-1}\binom{k}{i}=\binom{n}{k+1}$$
O que menos me interesa de todo isto son as fórmulas obtidas. Se pasei o traballo de recoller e ordenar todas estas ideas foi por dúas razóns. Unha delas, xa comentada de pasada, é a de traballar con debuxiños para abordar cuestións que, nun principio, son puramente aritméticas. A outra é que usando o mesmo tipo de metodoloxía poderemos abordar un problema en aparencia (só en aparencia) moi simple, e cunha resolución realmente fermosa. Pero iso será na vindeira ocasión.

domingo, 22 de outubro de 2023

Desafíos numéricos e probabilísticos para Secundaria

Na última remesa de problemas para a Secundaria extraídos do libro de David Linker e Alan Sultan Mathematics Problem-Solving Challenges for Secondary School Students and Beyond (Wordl Scientific 2016) recollemos ducia e media de cuestións numéricas e probabilísticas.

1. Cantos pares ordenados de enteiros positivos $(a,b)$ verifican $a^{2}-b^{2}=105$?

2. Cantos números naturais $n$ verifican que $\frac{2}{5}< \frac{n}{17}<\frac{11}{13}$?

3. Dous lados dun triángulo de área non nula miden $6$ e $11$. Cantos diferentes valores enteiros pode ter o terceiro lado?

4. Unha pizzería ofrece 5 ingredientes diferentes: pementos, champiñóns, cebola, albóndegas e bonito. As pizzas poden levar con calquera número de ingredientes, incluso sen ningún. Un cliente compra cada día un tipo de pizza diferente. Cantos días pode realizar estes pedidos?

5. Un reloxo dixital dá horas tales como 6:15 ou 12:34. Se ignoramos os puntos, as horas representan 3 ou 4 díxitos. Cantos múltiplos de 3 pode presentar durante o período de 12 horas que vai do medio día ata a media noite?

6. $X$ é un positivo de dous díxitos e $Y$ é o resultado de cambiar de posición os díxitos de $X$. Cantos valores de $X$ hai tales que $X+Y$ é un cadrado perfecto? E para que valores de $X$ a diferenza $X-Y$ é un cadrado perfecto?

7. Os 25 equipos dunha liga escolar están divididos en dúas divisións, A e B. Cada equipo xoga contra todos os outros da súa división exactamente unha vez e non xoga cos equipos da outra división. Se na división A se xogaron 36 partidos máis que na B, cantos equipos hai en cada unha delas?

8.  Cantos conxuntos de dous ou máis números consecutivos teñen unha suma de 100?

9. Para cantos valores de $n$ é $1155+n^{2}$ un cadrado perfecto.

10. Determina o número de triángulos non congruentes de lados enteiros, área positiva e de perímetro 15.

11. Acha un número de 4 díxitos tales que os dous da esquerda son iguais entre si, os dous da dereita tamén son iguais entre si e o número é un cadrado perfecto.

12. $k=1!+2!+3!+...+n!$ e $k$ é un cadrado perfecto. Determina todos os posibles valores de $n$.

13. A probabilidade de que chova é o cadrado da probabilidade de que non chova. Acha a probabilidade de que chova.

14. Dez cartas numeradas 1, 2,...,10 colócanse boca abaixo sobre unha mesa. Extráese unha carta e apúntase o seu valor. Devolvemos a carta e barallamos. Extráese unha segunda carta. Acha a probabilidade de que o número da segunda carta sexa maior que o da primeira.

15. Despois de lanzar dous dados fican visibles 10 caras. Calcula a probabilidade de que a suma dos puntos das caras visibles sexa divisible por 7.

16. Alberte, Belén e Celso tiran, por esta orde, un par de dados. O primeiro que obteña un 9 gaña. O xogo continúa ata que alguén gañe. Calcula a probabilidade de que gañe Belén.

17. Xián lanza un dado e Zeltia lanza dous dados. Acha a probabilidade de que a suma dos puntos de Zeltia coincida co resultado de Xián.

18. Lánzase un dado reiteradamente ata que apareza un 6. Acha a probabilidade de que se necesiten un número par de lanzamentos.

xoves, 19 de outubro de 2023

Desafíos trigonométricos e logarítmicos para secundaria

Velaquí unha terceira entrega da recompilación de problemas do David Linker e Alan Sultan Mathematics Problem-Solving Challenges for Secondary School Students and Beyond (Wordl Scientific 2016). 


1. Nun triángulo $\triangle ABC$, $\angle C=90$. Obtén o valor de $cotA\cdot cotB$

2. O cadrado ABMN constrúese sobre a hipotenusa do triángulo rectángulo $\triangle ABC$. Se $AC=1$ e $BC=20$, determina MC.


3. Acha o valor de $sen\frac{\pi }{7}+sen\frac{4\pi }{7}+sen\frac{7\pi }{7}+sen\frac{10\pi }{7}+sen\frac{13\pi }{7}$

4. Acha todos os $x$ tales $x\epsilon \left [ 0,360 \right ]$ e $\frac{1-cos2x}{sen2x}=1$

5. Se $tan^{2}\left ( 180-x \right )+sec\left ( 180+x \right )=11$ determina todos os posibles valores de $cosx$.

6. Calcula $x$ tal que $x\epsilon \left [ 0,90 \right ]$ e $cos^{4}x+sen^{4}x=\frac{3}{4}$

7. Calcula $\frac{sen75+cos75}{sen75-cos75}$

8. En $\triangle ABC$, $AB=20$, $BC=13$ e $AC=21$. Se $cosA+cosB+cosC=\frac{p}{q}$, onde $p$ e $q$ son enteiros positivos e coprimos, acha $p+q$

9. Os ángulos dun triángulo con lados 3, 4 e x forman unha progresión aritmética. Determina todos os valores de x.

10. Se $sen^{6}x+cos^{6}x=\frac{2}{3}$ e $x\epsilon \left [ 0,90 \right ]$, calcula $sen2x$.

11. Inscribimos un polígono regular de $n$ lados nunha circunferencia de raio $r$. Acha todos os $n$ tales que a área do polígono é un múltiplo enteiro de $r^{2}$

12. Acha o valor de $y$ se $\left ( log_{3} x\right )\left ( log_{x} 2x\right )\left ( log_{2x} y\right )=log_{x}x^{2}$

13. Se $log_{5}\left ( senx \right )=-\frac{1}{2}$ determina o valor numérico do $cos^{2}x$

14. Calcula o $log_{\frac{1}{8}}sen4350$

15. Acha todos os números reais $x$ tales que $log_{x}2+log_{2}x=\frac{5}{2}$

16. Se $log_{2}3^{4}\cdot log_{3}4^{5}\cdot log_{4}5^{6}\cdot ...\cdot log_{63}64^{65}=x!$, acha $x$.

17. Calcula o valor numérico de $log_{10}\frac{1}{2}+log_{10}\frac{2}{3}+log_{10}\frac{3}{4}+...+log_{10}\frac{99}{100}$

18. Acha o valor de $log\left ( tan1^{\circ} \right )+log\left ( tan2^{\circ} \right )+log\left ( tan3^{\circ} \right )+...+log\left ( tan90^{\circ} \right )$

luns, 16 de outubro de 2023

Desafíos xeométricos para secundaria

Seguro que se outra persoa tivera a encomenda de escoller ducia e media de cuestións xeométricas do libro de David Linker e Alan Sultan Mathematics Problem-Solving Challenges for Secondary School Students and Beyond (Wordl Scientific 2016) faría outra escolla distinta. Incluso eu mesmo, noutro momento, tamén me decantaría por outra elección. 

Na anterior entrada fixera unha recompilación de problemas aritméticos e alxébricos así que podemos considerar esta entrada como unha continuación.

1. Determina o raio dunha esfera tal que o seu volume coincida numericamente coa súa superficie

2. A lonxitude da tanxente a unha ciercunferencia desde un punto exterior P é 7. Se o raio da circunferencia é 3, calcula a mínima distancia de P á circunferencia.


3. Fórmase un octógono regular cortando triángulos rectángulos isósceles nas esquinas dun cadrado de lado 4. Determina a lonxitude de cada un dos lados do octógono.

4. Sexan os puntos $A(21,0)$, $B(0,20)$ e $P(a,b)$. Se $\angle APB$ é un ángulo recto, determina o mínimo valor que pode ter $a$.

5. Dúas cordas nunha circunferencia son perpendiculares. Unha ten segmentos de 4 e 3 unidades e a outra de 2 e 6. Acha o raio da circunferencia.

6. Nunha circunferencia de raio 10 trazamos dúas cordas paralelas a lados opostos do centro e que distan deste 5 unidades. Acha a área da rexión deliminada pola circunferencia e as paralelas.


7. Acha a área do hexágono ABCDEF que se formou unindo os puntos medios de lados adxacentes dun cubo unidade tal e como se amosa na imaxe

8. Dous triángulos congruentes de ángulos 30-60-90 con hipotenusa 6 son colocados de forma que as súas hipotenusas coincidan e se superpoñan nunha rexión de área non nula pero que non coincide con ningún dos dous triángulos. Determina a área de superposición.


9. Desde un punto $P$ exterior á circunferencia de centro $O$, trázanse as tanxentes de $P$ á circunferencia aos puntos $X$ e $Y$. Se $PO=PX+PY$. Determina o ángulo $\angle XPY$.

10. Determina o raio da circunferencia centrada no (0,0) e que é tanxente á recta $x+2y=10$

11. Nun triángulo $triangle ABC$, $AB=AC$, o punto $D$ está en $AC$ e $AD=DB=BC$. Determina o ángulo $\angle A$

12. Dados dous círculos concéntricos e unha corda do maior que é tanxente ao menor, sabendo que a corda mide 12 unidades, determina a área da coroa circular.

13. Nun triángulo $triangle ABC$, $AB=AC$. Hai puntos $D$ en $AB$, $E$ en $CA$ e $F$ en $AD$ tales que $CB=CD=ED=EF=FA$. Determina ángulo $\angle A$.


14. Nun triángulo $\triangle ABC$ $AB=AC=17$. O punto $E$ triseca o segmento $BC$ e $AE=15$. Calcula $BC$

15. Nun sistema de coordenadas cartesiano hai dúas circunferencias pasando polo punto (3,2) que son tanxentes a ambos eixos de coordenadas. Determina a suma dos raios desas circunferencias.

16. A suma das lonxitudes das diagonais dun rombo é de 14 unidades e a súa área é de 13 unidades cadradas. Determina a lonxitude do lado do rombo.

17. Inscríbese un hexágono ABCDEF dentro dunha circunferencia con $AB=CD=EF=2$ e $BC=DE=FA=10$. Calcula a área dun triángulo equilátero inscrito na circunferencia.


18. Dobramos un papel rectangular de $10\times 24$ de forma que coincidan os vértices opostos $A$ e $C$. Calcula a lonxitude da dobrez.

mércores, 20 de setembro de 2023

Desafíos aritméticos e alxébricos para secundaria


Na entrada anterior achegaba unha serie de problemas relacionados coa resolución de ecuacións cuadráticas. Algúns deles recollinos do libro de David Linker e Alan Sultan Mathematics Problem-Solving Challenges for Secondary School Students and Beyond (Wordl Scientific 2016). Como moitas das propostas que fan estes autores son problemas que teñen o seu atractivo, vou compartir unha pequena escolma. Aínda que no citado libro tamén os hai doutras áreas das matemáticas, nesta entrada só recollo os de carácter aritmético ou alxébrico. 

1. Cando unha cantidade de auga se conxela incrementa o seu volume nun $\frac{1}{12}$. Cando unha cantidade de xeo se derrete, en que fracción decrece o seu volume?

2. O dez por cento de 9 é o 9 por cento de que cantidade?

3. Un comerciante compra un coche á fábrica por un 20% menos que o prezo de venda recomendado. Se vende o coche polo prezo recomendado, que porcentaxe obtén de ganancia?

4. Un vestido branco custaba inicialmente 50€. Nas rebaixas reduciuse o prezo un 10%. Despois de incrementalo nun 10%, un vestido azul foi vendido polo mesmo prezo que o branco nas rebaixas. Calcula o prezo orixinal do vestido azul.

5. Sen calcular ningún cadrado, expresa $\sqrt{313^{2}-312^{2}}$ como un enteiro positivo

6. Acha a lonxitude da aresta dun cubo se o seu volume en unidades cúbicas é o mesmo número que a súa área superficial en unidades cadradas.

7. Cantos litros de auga pura deberemos engadir a 20 litros dunha solución ácida do 45% para transfomala nunha solución do 30%?

8. Se $a$ e $b$ son enteiros positivos tales que $a^{2}+24=b^{2}$, acha o maior valor posible de $a+b$

9. Se $i=\sqrt{-1}$, acha $i^{1}+i^{2}+i^{3}+...+i^{100}$

10. $n$ é o menor de $n$ enteiros consecutivos que teñen de media 94. Acha $n$

11. Se dúas das raíces de $x^{3}+px+q=0$ son $-1$ e $3$, acha a terceira raíz así como os valores de $p$ e $q$

12. Para que base $b$ se verifica o seguinte produto escrito nesa base: $21_{b}\cdot54_{b}=1354_{b}$

13. Xurxo conduce ata unha cidade distante e volve polo mesmo camiño. Debe facelo a unha media de 80 km/h co fin de chegar a unha cita na cidade de partida. Retrásase e fai unha media de 60 km/h na viaxe de ida. Acha a velocidade media de volta para que poida chegar á súa cita. 

14. Acha o produto de todos os $x$ que verifican $\frac{4}{x}-\frac{5}{x^{3}}+\frac{1}{x^{5}}=0$

15. Pedro corre o dobre de rápido do que anda. Un día, no camiño á escola anda durante o dobre de tempo do que vai correndo e lévalle 20 minutos. Unha semana máis tarde corre durante o dobre de tempo que anda. Cantos minutos lle leva chegar desta vez ao colexio?

17. Se $A=1+\frac{1}{a}+\frac{1}{a^{2}}+...$ e $B=1+\frac{1}{b}+\frac{1}{b^{2}}+...$, acha todos os pares de enteiros positivos $(a,b)$ tales que $a>b>1$ e $A+B=\frac{15}{7}$

18. Xenerosa ten unha carteira máxica que duplica os cartos que lle metes dentro e  cobra 1'20 € por cada vez que alguén a usa. Alexandre comeza cunha certa cantidade de cartos que introduce na carteira e que así duplica. Despois de pagar polo seu uso volve a colocar todo o seu capital na carteira, volvendo a dobralo e a pagar por segunda vez a Xenerosa. Finalmente volve a colocar todo na carteira e a facer o terceiro pago. Alexandre decátase entón de que non lle quedou nada. Canto tiña ao principio?

venres, 8 de setembro de 2023

Tipos de problemas, tipos de ensino

A importancia da educación está nos detalles. Todos os profesores de Matemáticas de Secundaria explicamos temas como o da resolución das ecuacións de segundo grao. Pero non todos o facemos igual. 

Unha das cousas que temos que facer é propoñer problemas/exercicios. Podémonos achegar a distintos estilos de aprendizaxe en función do tipo de problemas que propoñemos.

Problemas tipo I

1. $x^{2}+x-6=0$

2. $x^{2}-8x+15=0$

3. $10x^{2}+8x+12=0$

4. $8x^{2}-22x-21=0$

Haberá quen teña un enfoque meramente algorítmico das matemáticas. Ese profesor só tratará con este tipo de problemas. 

Problemas tipo II

5. En cada un das ecuacións anteriores identifica os valores dos coeficientes $a$, $b$, $c$; indica tamén en cada caso o valor das solucións $x_{1}$ e $x_{2}$. Determina en cada caso canto vale a suma das solucións $S=x_{1}+x_{2}$ e o seu produto $P=x_{1}\cdot x_{2}$. Compara os coeficientes coa suma e o produto das solucións. Observas algo?

6. Calcula o discriminante das ecuacións seguintes e despois resólveas. Que observas?

a) $x^{2}-6x+5=0$        b) $x^{2}-6x+9=0$          c) $x^{2}-10x+40=0$ 

Estas son actividades dirixidas cun obxectivo de aprendizaxe específico. A resposta non está determinada como nos problemas de tipo I pero oriéntase ao alumnado a que centren a súa atención nun aspecto para que "descubran" determinadas propiedades. Neste caso preténdese que obteñan as fórmulas de Viéta para ecuacións de segundo grado con $a=1$ ou que relacionen o número de solucións co signo do discriminante.

Problemas tipo III

7. $\frac{5}{x}+2x=6$

8.$\frac{\left ( x+3 \right )\left ( x-3 \right )-4}{2}-\frac{x-2}{3}=\frac{\left ( x-2 \right )^{2}+1}{6}$

Estas non son ecuacións de segundo grao reducidas á forma $ax^{2}+bx+c=0$.  Traballar unicamente coas dun tipo pode levar á falsa conclusión de que esa é a única forma que teñen. 

Probemas tipo IV

9. Se $a$ e $b$ son as raíces de $5x^{2}+6x+7=0$, acha $\frac{1}{a}+\frac{1}{b}$

10. Se $a$ e $b$ son as raíces de  $3x^{2}+4x+5=0$, acha $\frac{a}{b}+\frac{b}{a}$

11. Se $a$ e $b$ son as raíces de $2x^{2}+3x+4=0$, acha $\frac{a^{2}}{b}+\frac{b^{2}}{a}$

Aquí estase pedindo máis que nos casos anteriores. Requírese non só coñecemento dos tópicos da resolución das ecuacións de segundo grao, senón que se precisa habilidade na manipulación alxébrica e capacidade e enfrontarse a novos problemas. Non todo o alumnado está en disposición de tratalos aínda que a abordaxe destes problemas pode ser un bo entrenamento para a seguinte remesa.

Problemas tipo V

12. Acha todos os $a$ tales que a suma dos cubos e a suma dos cadrados das raíces de $ax^{2}+4x+3=0$ sexan iguais.

13. Acha todos os pares ordenados $(a,b)$ tales que as raíces de $x^{2}+ax+b=0$ son os cadrados das raíces de $5x^{2}-6x+10=0$

martes, 13 de xuño de 2023

Cuestións diofantinas do "Sumario Compendioso" de Juan Díez

Tal e como prometera na primeira entrada adicada ao Sumario Compendioso de Juan Díez, vou continuar debullando algúns aspectos dese libro. Neste caso abórdanse as páxinas tituladas Cadrados, que tratan sobre problemas diofantinos.

Primeira cuestión. Dáme un número que xuntándolle 15 faga un cadrado e restándolle 4 tamén sexa cadrado.

Regra. Suma 15 e 4, son 19. Engádelle 1, son 20. Toma a metade, que é 10. O seu cadrado, 10 veces 10 son 100. Disto resta 15 que son 85, e este é o número demandado do cal resta 4, que dá 81, cuxa raíz é 9.

No Liber quadratorum de Leonardo de Pisa, a segunda proposición di que calquera cadrado excede ao inmediatamente anterior na suma das súas raíces. En efecto, $n^{}-\left ( n-1 \right )^{2}=2n-1=\left ( n-1 \right )+n$.

Se aplicamos este resultado á primeira cuestión, temos que buscar un número intermedio entre dous cadrados consecutivos que diste 15 e 4 dos mesmos. A suma das distancias será a diferenza dos cadrados: $15+4=9=2n-1$. Se, como di Juan Díez, lle engadimos 1, obtemos $2n$.

Segunda cuestión. Dáme un número que xuntándolle 8 sexa cadrado e restándolle 8 fique cadrado. En maior cantidade dáme un número que xuntándolle 20 sexa un cadrado e restándolle 20 fique cadrado.

Regra. Toma a metade de 8, que é 4. Eleva ao cadrado, é 16, xúntalle 1, é 17 e este é o número demandado.[...] Toma a metade de 20, que é 10. Eleva ao cadrado, é 100, xúntalle 1 e fai 101 e este é o número demandado.

Os cadrados son $17-8=9=3^{2}$ e $17+8=25=5^{2}$ no primeiro caso e $101-20=81=9^{2}$ e $101+20=11^{2}$ no segundo. Nos dous os cadrados son da forma $\left ( n-1 \right )^{2}$ e $\left ( n+1 \right )^{2}$, de aí que a solución veña dada pola media $$x=\frac{\left ( n-1 \right )^{2}+\left ( n+1 \right )^{2}}{2}=n^{2}+1$$ Se lle chamamos $d$ á distancia entre o número buscado e calquera dos cadrados $\left ( n-1 \right )^{2}+2d=\left ( n+1 \right )^{2}$, de aí que $n=n=\frac{d}{2}$ e, polo tanto $x=\left ( \frac{d}{2} \right )^{2}+1$, que é a regra que dá Juan Díez.

Terceira cuestión. Unha persoa ten dúas cordas moi boas, danlle por elas 8 pesos, non as quere dar. Vén outro a compralas por varas de forma que por cada vara lle dá tantos tomíns como varas teña a corda. Despois de botar contas observa que este non lle dá máis que o primeiro. Demando cantas varas tiña cada corda.
David Eugene Smith explica a solución que se dá no Sumario compendioso da seguinte maneira. Sexan $x$, $y$, as lonxitudes (que neste problema son iguais aos prezos) de cada unha das cordas. Tendo en conta que 8 tomíns equivalen a un peso, o que se paga por elas son 64 tomíns. Se damos todos os valores en tomíns, o prezo das dúas cordas será $x^{2}+y^{2}=64=8^{2}$. Entón Díez emprega un método que non aceptariamos hoxe. Partindo de que $3^{2}+4^{2}=5^{2}$. aplica unha regra de 3 (!) entre estas expresións obtendo $\frac{x}{3}=\frac{8}{5}$, de aí que $x=4\frac{4}{5}$ e despois $y=64\frac{2}{5}$

Cuarta cuestión. Se che fose pedida esta cuestión: dáme un cadrado tal que restándolle unha certa candidade fique un cadrado e engadíndolla sexa tamén cadrado.

Lembremos que este é esencialmente o problema que Xoán de Palermo lle propuxo a Leonardo de Pisa e que sería o que daría lugar a que este escribira o Liber quadratorum. Do que se trata é de achar tres cadrados en progresión xeométrica. Na ligazón vese como o resolveu Fibonacci, a partir da definición dos congruum e os números congruentes con eles. Juan Díez dá un listrado destes valores e resolve o problema a partir deles. Aquí volvemos a ver a un Juan Díez coñecedor da terminoloxía e dos estudos dos cadrados feitos por Leonardo de Pisa.


Se aos congruos lle sumamos e restamos os congruentes, obtemos a terna de cadrados en progresión aritmética. No primeiro caso $25-24=1$, $25-24=49$. Resulta que $(1=1^{2},25=5^{2},49=7^{2})$ é unha das ternas buscadas. No segundo caso $100-96=4$ e $100+96=196$. Outra terna de cadrados en progresión xeométrica será $(4=2^{2},100=10^{2},196=14^{2})$

Curiosamente, así como podemos dar moitos exemplos de tres cadrados en progresión aritmética non é posible achar catro cadrados en progresión aritmética. Parece ser que Fermat estableceu este resultado nunha carta a Frenicle en 1640 pero que, como era o seu costume, non ofreceu ningunha demostración. Euler había de daría un resultado que levaría directamente á demostración, pero ata ben entrado o século XX non se ten coñecemento de que ninguén se volvera a preocupar deste teorema co fin de ofrecer unha demostración explícita. 

Quinta cuestión. Achar tres cadrados ou máis tales que sumados fagan un cadrado.

Nesta outra entrada explicamos como Fibonacci podía dar unha suma de $n$ cadrados que fose tamén un cadrado. Para is0 non tiña máis que aplicar recursivamente esta identidade para calqura número impar $x$: $$x^{2}=\left (\frac{x^{2}+1}{2}  \right )^{2}-\left (\frac{x^{2}-1}{2}  \right )^{2}$$

A resposta de Juan Díez é a mesma que a que acabamos de indicar, polo que volvemos a ver que coñecía os tópicos matemáticos desa altura.

Tomo o primeiro número cadrado impar, que é 9, ao cal resta un, quedan 8, toma a metade e cádrao, son 16 e isto é o segundo, axunta 9 e 16, son 25, [e agora repite o proceso], quita un, quedan 24, toma a metade, é 12, cádrao, son 144 e este é o terceiro. Se o queres ver suma 9 e 16 e 144, son 169, raíz dos cales é 13: e nota que por esta vía poderalo facer in infinitum.

O seguinte problema está relacionado con este.

Sexta cuestión. Digo que me deas un cadrado que quitándolle ou xuntándolle tres veces a súa raíz fagan un número cadrado.

Para resolvelo Díez aproveita a súa lista de números congruos. De feito el usa o primeiro da lista, aquel que nos dá $25-24=1$ e $25+24=49$. Teñamos presente que $24=3\cdot 8$, de aí que $5^{2}-3\cdot 8=1^{2}$. O problema estaría resolto se nesta igualdade, no canto dun $5^{2}$ tivese un $8^{2}$. Para aproveitar este feito multiplico a igualdade por $\frac{5^{2}}{8^{2}}$:

$$\frac{5^{2}}{8^{2}}\cdot 5^{2}-3\cdot 8\cdot \frac{5^{2}}{8^{2}}=\frac{5^{2}}{8^{2}}$$

$$\left (\frac{25}{8}  \right )^{2}-3\cdot \frac{25}{8}=\left ( \frac{5}{8} \right )^{2}$$

De aí que $\frac{25}{8}$ sexa a solución do problema proposto que se dá no Sumario Compendioso.

Os dous últimos problemas teñen unha redacción moi parecida. Por iso xa os damos xuntos.

Sétima cuestión. Anota isto, o cadrado de 2 é 4, o cadrado de 3 é 9, e a súa suma fai 13. Dáme outros dous números que non sexan nin 2 nin 3, tal que a suma dos seus cadrados sexa 13.

Oitava cuestión. O cadrado de 3 é 9, o cadrado de 4 é 16, e sumados, 25. Dáme outros números que non sexan nin 3 nin 4, tal que a suma dos seus cadrados sexa 25.

Está claro que as solucións terán que ser racionais.... e como a lonxitude a entrada xa vai sendo suficente, deixamos o comentario neste punto.

luns, 17 de abril de 2023

Un par de problemas do "Liber quadratorum"

Na entrada anterior describiamos como un problema proposto por un tradutor da corte do Sacro Imperio foi o que incentivou a Leonardo de Pisa a redactar o Liber quadratorum, un libro que comeza coa coñecida fórmula da suma dos níumeros impares:$$1+3+5+...+(2n-1)=n^{2}$$

Este resultado é aproveitado por Leonardo para resolver o seguinte problema:

Problema. Achar dous cadrados que teñan como suma un cadrado

Está claro que do que se trata é de obter unha terna pitagórica, cuestión da que xa nos ocupamos noutra ocasión. O curioso do asunto é como Fibonacci fai uso do resultado anterior para resolver o problema.

Considérese $x$ un impar, sexa $x^{2}=2n+1$ tamén impar, que será un dos cadrados que ofreceremos como parte da terna. Outro será a suma de todos os impares menor que $x^{2}$, de aí que

$$1+3+5+...+(2n-1)+(2n+1)=n^{2}+x^{2}=n^{2}+2n+1=\left ( n+1 \right )^{2}$$

A terna é $\left ( n,x,n+1 \right )$. Ademais $n=\frac{x^{2}-1}{2}$ polo que a anterior igualdade pode escribirse;

$$\left (\frac{x^{2}-1}{2}  \right )^{2}+x^{2}=\left (\frac{x^{2}+1}{2}  \right )^{2}\quad\quad [F1]$$

Esta igualdade non é ningunha novidade, xa era coñecida desde a antiguidade. Para $x=3$ obtemos a famosa terna pitagórica:

$$4^{2}+3^{2}=5^{2}\quad\quad[1]$$

Agora ben, considerando que 5 tamén é impar, e substituíndo outra vez na anterior fórmula [F1], da que agora damos unha versión que nos vai interesar máis:

$$x^{2}=\left (\frac{x^{2}+1}{2}  \right )^{2}-\left (\frac{x^{2}-1}{2}  \right )^{2}\quad\quad [F2]$$

temos que

$$5^{2}=\left ( \frac{5^{2}+1}{2} \right )^{2}-\left ( \frac{5^{2}-1}{2} \right )^{2}=13^{2}-12^{2}$$

De aí que substituíndo en [1]:

$$3^{2}+4^{2}=13^{2}-12^{2}\\3^{2}+4^{2}+12^{2}=13^{2}\quad\quad [2]$$

Así obtivemos un cadrado como suma de tres cadrados... pero resulta que 13 volve a ser impar, entón

$$13^{2}=\left ( \frac{13^{2}+1}{2} \right )^{2}-\left ( \frac{13^{2}-1}{2} \right )^{2}=85^{2}-84^{2}$$

Así que, substituíndo en [2]:

$$3^{2}+4^{2}+12^{2}+13^{2}+84^{2}=85^{2}\quad\quad [3]$$

Aínda que isto non é ningunha sorpresa, pois todo natural é suma de catro cadrados (Liouville dixit), creo que xa está claro por onde vou tirar. No seguinte paso teremos un cadrado como suma de 5 cadrados:

$$3^{2}+4^{2}+12^{2}+13^{2}+84^{2}+3612^{2}=3613^{2}\quad\quad [4]$$

Utilizando [F2] podemos establecer a seguinte sucesión, definida recursivamente:$a_{n+1}=\frac{\left (a_{n}+1  \right )^{2}-1}{2}$ con $a_{1}=3$  ou calquera outro impar. Esta sucesión verificará

$$a_{n+1}^{2}=\sum_{i=1}^{n}a_{i}^{2}$$

En definitiva, é posible achar n cadrados que teñan como suma outro cadrado. Unha sucesión que resolve esta cuestión é a A127690 - OEIS

$$3, 4, 12, 84, 3612, 6526884, 21300113901612, 226847426110843688722000884,...$$

Un par de problemas

O manuscrito do Liber quadratorum, que foi recuperado no século XIX polo prínciupe Boncompagni, non está completo. Veremos en que consisten os últimos problemas que aparecían nel.

Problema. Achar enteiros $x$, $y$, $z$, $u$ e $v$ tales que 

$$\left.\begin{matrix}x^{2}+y^{2}=u^{2}\\ x^{2}+y^{2}+z^{2}=v^{2}\end{matrix}\right\}$$

A partir da análise feita anteriormente a resolución deste problema é inmediata. Unha posible solución podería ser $x=3$, $y=4$, $z=12$ con $u=5$ e $v=13$. Basta ver que [1] e [2] verifican as dúas igualdades pedidas.

O último problema do manuscrito foi proposto por un filósofo do emperador chamado Teodoro.

Problema de Teodoro. Achar enteiros $x, y, z, u, v$ e $w$ tales que 

$$x+y+z+x^{2}=u^{2}\\x+y+z+x^{2}+y^{2}=v^{2}\\x+y+z+x^{2}+y^{2}+z^{2}=w^{2}$$

Decatémonos de que a expresión do primeiro membro da primeira ecuación aparece na segunda e que a expresión do primeiro membro da segunda ecuación aparece na terceira. De aí que poidamos reducir a anterior expresión á seguinte:$$\left.\begin{matrix}x+y+z+x^{2}=u^{}\\ u^{2}+y^{2}=v^{2}\\ v^{2}+z^{2}=w^{2}\end{matrix}\right\}$$

Leonardo fai varias tentativas para resolver este problema. Céntrase nas dúas últimas ecuacións e parte dun par de ternas pitagóricas: $$\left.\begin{matrix} (6k)^{2}+(8k)^{2}=(10k)^{2}\\ (10k)^{2}+(24k)^{2}=(26k)^{2}\end{matrix}\right\}$$

Neste caso $y=8k$, $z=24k$, $u=10k$, $v=26k$; para calcular $x$ substituiriamos eses valores na primeira ecuación. Obténdose como solución $x=\frac{16}{5}$, $y=\frac{48}{5}$, $ z=\frac{144}{5}$, como se ve, unha solución con números fraccionarios. Para dar cunha de números naturais terá que facer outro intento. Consideremos este outro par de ternas pitagóricas $$\left.\begin{matrix}(7k)^{2}+(24k)^{2}=(25k)^{2}\\ (25k)^{2}+(60k)^{2}=(65k)^{2}\end{matrix}\right\}$$

Agora $y=24k$, $z=60k$, e $u=v=25k$, substituíndo estes valores na primeira ecuación temos $$x^{2}+x+24k+60k=(7k)^{2}$$

Para eliminar o termo en $k^{2}$ realizamos a substitución $x=7k-a$

$$(7k-a)^{2}+7k-a+84k=(7k)^{2}$$

Operando e despexando $k$, obtense $k=\frac{a(a-1)}{7(2a-13)}$

Como $a$ debe ser un número enteiro positivo, ten que ser maior que 1. Para que $k$ sexa positivo, entón $2a-13>0$ polo que podemos tomar $a=7$, entón $k=6$. 

Isto danos a solución $x=7\cdot 6-7=35$, $y=24\cdot6=144$ e $y=60\cdot6=360$. Para estes valores $u=42$, $v=150$ e $w=390$ completan a solución en números naturais que se buscaba.