O principio do Pombal di que se temos $n$ buratos nun pombal e $n+1$ pombas daquela nalgún burato hai máis dunha pomba.
Nunca souben para que podía servir algo tan obvio, ultimamente quixen profundar algo máis e deime conta que a sustanza deste principio reside en como podemos enfocar os problemas para poder usalo e así transformamos problemas nada evidentes en problemas cunha demostración moito simple. Un caso que me fascina é o teorema que se atribúe a Marta Svéd e Andrew Vázsonyi. Trata sobre secuencias aleatorias e divisivilidade.
Teorema de Sved-Vázsonyi
Sexan os enteiros $a_1, a_2, \cdots, a_n$, que poden mesmo estar repetidos. Daquela hai un subconxunto de elementos consecutivos desa secuencia $a_k, a_{k+1}, \cdots, a_l$ tal que a suma $a_k + a_{k+1} + \cdots, a_l$ é un múltiplo de $n$.
Exemplo
Mais como pode ser tal cousa? Se eu apaño $n$ números e os sumo poden ser múltiplos de calquera cousa, eu que sei, sumarán un múltiplo de $17$ ou de $3015$ ou de $2$, como que haberá unha desas sumas que sexa división exacta por $n$? non o vexo.
A ver: $\{3, 7, 1, 4, 1, 1\}$ temos $n=6$ e imos probrar o máis simple, sumas consecutivas desde o primeiro: $\{0, 3, 10, 11, 15, 16, 17\}$, mmm... ningunha é divisíbel por $6$, desde o segundo $\{0, 7, 8, 12, \cdots \}$ cazado !! $7 + 1 + 4$ é múltiplo de $6$.
Demostración
Sexa $S=\{0, 1, \cdots, n\}$ e $R=\{0, 1, \cdots, n-1\}$ e consideremos o mapa $f: S \rightarrow R$ determinado polo residuo de $f(m)=a_1 + \cdots + a_m$ módulo $n$. Polo principio do pombal temos $f(k)=f(l)$ para algún $k \lt l$ en $S$ e por tanto
$$
\begin{equation}
\sum_{i=k+1}^{l} a_i = \sum_{i=1}^{l} a_i - \sum_{i=1}^{k} a_i
\end{equation}
$$
faise cero módulo $n$. O subconxunto $a_k, a_{k+1}, \cdots a_l$ ten a propiedade procurada, a súa suma é múltiplo de $n$.
Exemplo aplicando a demostración
Seguindo a demostración agora é moito simple obter o subconxunto de elementos consecutivos cuxa suma é divisíbel polo número total de elementos.
Para $\{3, 7, 1, 4, 1, 1\}$ con sumas parciais $\{0, 3, 10, 11, 15, 16, 17\}$ os residuos entre $6$ son $\{0, 3, 4, 5, 3, 4, 5\}$, vemos que hai dous residuos $3$ e dous $4$ e dous $5$, polo principio do pombal debe haber alomenos $2$ pombas no mesmo burato, pero pode haber máis (se hai outros buratos baleiros).
Así temos:
entre os dous $3$: $7+1+4 = 12$.
entre os dous $4$: $1+4+1 = 6$.
entre os dous $5$: $4+1+1 = 6$.
Vexamos outro exemplo ao chou.
Para $n=9$ con $\{2, 8, 4, 1, 19, 17, 2, 3, 12\}$.
Varias das últimas entradas deste blogue tiveron como protagonista a Márta Svéd,(A curiosa xeometría de Márta Svéd. Introdución, A curiosa xeometría de Márta Svéd. O desprazamento, e A curiosa xeometría de Márta Svéd.O V postulado e máis alá) matemática húngara nacida no 1910 que desenvolvería a maior parte do seu traballo en Australia. Isto fixo que me preguntara cales foron as circunstancias da súa vida, especialmente o caldo de cultivo no que creceu a súa afición polas matemáticas. Márta pertenceu a un grupo de estudantes universitarios de Budapest que se coñece como Círculo Anónimo porque se reunían con frecuencia ao pé dunha estatua no parque central da cidade que está adicada a un historiadior medieval anónimo húngaro. Estas reunións foron un dos principais incentivos que eles mesmos relataron como fundamentais para o seu interese polas matemáticas. Para coñecer mellor as súas orixes debemos remitirnos a unha revista,
Número do 1900 da revista KöMaL
a Középiskolai Matematikai és Fizikai Lapok (KöMaL) ou Revista de Matemáticas e Física de Secundaria. Foi fundada por un profesor de secundaria, Dániel Arany (1863-1945), en Győr (Hungría). A revista propón problemas aos estudantes e estes envíanlle as súas solucións ao editor. As solucións son cualificadas por un grupo de colaboradores e despois publícanse co nome do autor. O primeiro número de KöMaL aparece o 1 de xaneiro de 1894. Ese mesmo ano, e con problemas que apareceran na revista, tamén comeza o Concurso de Matemáticas de Eötvös que pasaría a chamarse Krürschák a partir da II Guerra Mundial. Este concurso serviría de modelo e inspiración doutros que comezaron a convocarse nas primeiras décadas do século XX, como foi o caso da de Leningrado (San Petersburgo). No 1959 Rumanía convoca a varios países da órbita da URSS (Hungría, Polonia, Checoslovaquia, RDA e URSS) na primeira edición dunha Olimpíada Matemática Internacional. Finlandia uniríase no 1965, Gran Bretaña, Francia e Italia no 1967. A partir dese momento o número de países participantes aumentou rapidamente.
Parece ser que Lipót (Weiss) Fejér (1880-1959), quen obtivera moi malos resultados na escola primaria, comezou a interesarse polas matemáticas da man de Sigismund Maskay e converteuse nun solucionador habitual dos problemas da KöMaL. Acadou o segundo posto na Eötvos de 1897. Cunha excelente capacidade narrativa, as conferencias e artigos de Fejér forxaron moitas vocacións matemáticas. Dirixiu unha escola de análise de gran éxito. Foi director de tese de John von Neumann, George Pólya, Pál Erdős ou Pál Turán.
KöMaL deixa de editarse durante a I Guerra Mundial. A partir do 1925 cae baixo a dirección de Andor Faragó (1877-1944) e comeza a publicar as fotos dos mellores resolutores de problemas. Cando eses alumnos chegan á universidade recoñécense por esas fotografías. Isto facilita que se poñan en contacto. Así, un grupo de mozos xudeus, desafiando as leis que impedían as reunións, xúntanse nun parque no centro de Budapest, ao pé da estatua de Anónimo. A veces eran catro ou cinco, pero podían chegar a reunirse ata uns vinte. Conversaban de moitos temas, pero sobre todo da súa paixón, as matemáticas.
Estatua de Anónimo no parque central de Budapest
A figura máis destacada do Círculo Anónimo foi
Pál Erdős (1913-1996). Xa desde pequeno dou mostras de interese polas matemáticas. Canto tiña un ano as tropas rusas tomaron prisioneiro ao seu pai, Lajos (Engländer) Erdős, quen permaneceria nun cárcere en Siberia durante seis anos.
A pesar do antisemitismo obtén praza na universidade de Budapést e doctórase aos 21 anos. Marcha ao Reino Unido e posteriormente aos Estados Unidos. Foi tremendamente prolífico pois chegou a publicar uns 1500 artigos, moitos deles en colaboración con outros 500 coautores.
Na seguinte película documental do ano 1993, N is a Number, a Portrait ofPaul Erdős, relátanse algúns dos seus principais aspectos biográficos. Recomendo ver sobre todo a parte que vai entre o minuto 8:50 e 12:20 pois é o que máis relación ten con esta entrada.
No intervalo indicado entrevístase a Márta Svéd, amiga de Pál Erdős
Márta (Wachberger) Svéd. Márta e o seu marido George Svéd marcharon de Hungría no ano 1939. O seu país de acollida foi Australia. Ela converteuse na directora do departamento de matemáticas da Wilderness School, unha escola de ensino secundario privada para nenas en Adelaida. Traballou alí ata1958, ano no que pasou a ser docente na Universidade de Adelaida tras completar a súa formación matemática. Entre as súas contribucións matemáticas, Márta desenvolveu un algoritmo para, a partir de tomografías computarizadas, recrear modelos de nylon en 3D de cranios de pacientes. Estes modelos usáronse durante anos na Unidade Craneofacial Australiana (en Adelaida) para planificar cirurxías complicadas en nenas e nenos desfigurados por anomalías craneofaciais. Con 75 anos defendeu a súa tese de doutoramento na Universidade de Adelaida. AAustralian Maths Trust homenaxeouna no ano 1994 e entre outros aspectos destacaban que foi a creadora da primeira revista para estudantes de secundaria en Australia. Márta quixo levar ao estudantado australiano a exitosa experiencia que ela mesma vivira grazas á KöMaL.
Márta é a autora de Journey into Geometries (AMM 1991) unha curiosa obra dialogada con tres personaxes principais, Alicia, unha muller con gran capacidade de razoamento matemático, Lewis Carroll, que representa as matemáticas decimonónicas e o curioso Dr. Whatif, que sempre está buscando novas hipóteses e reivindica o papel das matemáticas do século XX ao estilo hilbertiano. Todos eles interactúan con outros personaxes recollidos de Alicia no país das marabillas.
Para comprender mellor o ambiente universitario no que se desenvolveron Márta e Erdős continuaremos reseñando as biografías dos compoñentes do Círculo Anónimo. As fotos que aparecen nesta entrada foron todas sacadas da revista KöMaL.
Deső Lázár (1913-1943). Debido á lei do númerus clausus non puido ingresar na universidade en Budapest e tivo que marchar a estudar á de Szeged, xunto a Géza Gründwald. Só publicou un artigo na súa vida, precisamente sobre a xeneralización dun problema de Géza. Traballou de carpinteiro e despois conseguiu un posto de profesor. Ferido nunha perna morreu desangrado. No 1974 Rózsa Péter pídelle ás escolas secundarias adicar un premio á memoria dun matemático falecido na II Guerra. A noticia chégalle a Erdős e el é quen propón homenaxear a Deső Lázár.
Géza Gründwald (1910-1943). Alumno de Lajos Erdős. Era un gran xogador de xadrez. Compañeiro de clase de Pál Erdős, xuntos xogaban ao xadrez no parque de Várolisget. Procedía dunha familia con poucos recursos así que cando enfermou de tuberculose, enfermidade grave nesa altura, non tiña posibilidades dun bo tratamento. Sería Lajos quen acudiría na súa axuda para pagarlle o ingreso nun sanatorio durante un ano. Debido á enfermidade, e tamén á lei racista de números clausus, non obtén praza universitaria en Bucarest. Por mediación de Lajos consigue ir á universidade do sur de Hungría en Szeged. Publica varios artigos sobre os polinomios de interpolación de Lagrange.
Durante a II Guerra Mundial ingresou nun servizo de traballos forzados. Un dos vixiantes era matemático e lera algún dos seus artigos.Debido a isto procuroulle un traballo mellor. Finalmente sería fusilado con case todos os membros do seu grupo como represalia por un acto de sabotaxe en Gyor.
Pál Turan (1910-1976). Escibiría uns 150 artigos. Traballou na teoría de números. Foi fundador da teoría de grafos exrtremais. Fixo a tese baixo a dirección de Féjer. Durante a II Guerra Mundial estivo en varios campos de traballo. Posiblemente isto salvoulle a vida xa que os xudeos que non estaban nos campos foron traslados aos campos de exterminio. Continuou facendo matemáticas neste campos, incluso dixo que moitas das mellores ideas que tivo foron nesta penosa situación. Morreu de leucemia, sen sabelo, xa que a súa familia, en concreto a súa muller, a matemática Vera Sós, ocultoullo.
Tibor (Gründwald) Gallai (1912-1942) Traballou en combinatoria e teoría de grafos. O mellor amigo de Erdős ao que coñeceu no instituto. Os seus profesores non lle permitiron participar no Eötvos, e como no exame de ingreso do seu ano quedou en 5º lugar (George Svéd quedara de 1º e Marta (Wachberger) Svéd de 3ª), debido ao númerus clausus non puido ingresar na universidade. Preséntase á seguinte edición do Eötvos (1930) e queda primeiro, co que pode ingresar directamente nos estudos superiores. Ao finalizar a II Guerra Mundial comeza a dar clases nun centro de Secundaria. Era un profesor excelente. Tivo entre as súas alumnas a Vera Sós. Tiña un grao de integridade esaxerado. Deixou o instituto no que estaba traballando para coidar á súa muller sen cobrar pois consideraba que non debía facelo se non aportaba nada. Chegou a vivir practicamente na indixencia. Moitos dos seus resultados recibiron o nome doutros matemáticos porque a el non lle importaba, incluso o fomentaba. Cando na revista KöMaL publican un artigo laudatorio sobre el, como acto de protesta, abandona a Sociedade J. Bolyai, a responsable da publicación.
Lázsló Alpár (1914-1991) Membro do Partido Comunista, ilegal, foi detido no ano 1932 e encarcerado. Foi expulsado da Universidade polo seu activismo no movemento estudantil comunista. Marcha a Francia e estuda na Sorbona. Alí é detido por "sospeitoso comunista" e permanece prisioneiro durante a II Guerra Mundial ata que escapa e organiza un grupo partisano da resistencia francesa, participando en varias accións con éxito como a voadura da ponte do río Durance. Regresa a Hungría e participa en actvidades sindicais. No 1949 é depurado no proceso de Rajk e volveu a prisión (1949-1953). Anos despois sería rehabilitado.
Fixo contribucións na teoría de funcións complexas. Nos últimos anos da súa vida escribiu textos divulgativos e de historia das matemáticas. Suicidouse.
Endre (Weisfeld) Vazsónyi (1916-2003). O pai tiña unha zaparería moi próspera en Bucarest. Tería uns 13 anos cando coñece a Erdős. Segundo un relato do propio Vazsónyi, Pál pídelle un número de catro cifras. Cando llo di, Erdős devólvelle inmediatamente o seu cadrado. De seguido pregúntalle cantas demostracións coñece do teorema de Pitágoras. Vazsónyi só coñecía unha. Erdős sabía de 37. Endre aña o Eötvos de 1931.Fai a tese, dirixido por Féjer, sobre superficies de dimensión superior. Fronte á terrible discriminación dos xudeus, fuxe a Francia e despos aos EEUU. Alí traballaría para a industria militar e na informatización dunha gran compañía. Tamén participou en estudos de investigación operativa.
George Szekeres (1911-2005). Mostrou interese e capacidades nas matemáticas integrándose no Círculo Anónimo, porén cando iniciou os estudos universitarios, fíxoo no campo da química na Universidade Técnica de Budapest, seguindo os desexos dos seus pais que necesitaban químicos para o negocio familiar. Mentres estudaba, a firma familiar crebou e, cando ao graduarse en 1933, traballou ata 1939 para unha empresa de peles en Simontornya, un centenar de quilómetros ao norte de Budapest.
Ao agravarse o antisemitismo baixo a influencia nazi , emigrou coa súa muller Ester (Klein) Szekeres (1910-2005) a Shanghái (China), onde xa se marchou o seu irmán, Imre, anteriormente. A empresa na que traballaba en Shanghái tamén crebou e atopáronse cun recentemente nado no medio da Segunda Guerra chinojaponesa e da revolución comunista chinesa . Despois de anos de penurias extremas, en 1945, ao terminar a Segunda Guerra Mundial , traballou de administrativo nunha base aérea estadounidense. En 1948, a familia trasladouse a Adelaida (Australia) , aceptando unha invitación como profesor na universidade desta cidade. Alí vivirían no apartamento de Márta Svéd durante tres anos. En 1964 trasladáronse a Sydney para ser profesor da universidade de Nova Gales do Sur . Retirouse en 1976, pero durante vinte e cinco anos máis estivo a ir á universidade case todos os días. En 2004, volveu vivir a Adelaida, cos seus fillos, pero a súa muller sufriu un ictus e tivo que ser ingresada nunha residencia. Uns meses despois, el tamén ingresou na mesma residencia, na que faleceron ambos o mesmo día de agosto de 2005.
En 1984, cofundou coa súa muller unha reunión semanal de enriquecemento das matemáticas que desde entón ampliouse ata converterse nun programa duns 30 grupos que seguen reuníndose semanalmente e inspirando a estudantes de secundaria en toda Australia e Nova Zelandia.
No ano 1995 a Australian Maths Trust homenaxeou ao matrimonio. Entre outras cousas destacaban que George foi precursor doutra revista para o alumnado de secundaria, Parabola, que aínda se publica actualmente.
Szekeres é autor ou coautor de máis dun centenar de artigos publicados en revistas científicas. Os seus campos de traballo máis notables son a teoría de grafos, a álxebra e teoría de grupos , a teoría de números , a análise matemática e a física matemática
Este é o terceiro e derradeiro capítulo da serie adicada a unha xeometría que a matemática húngara Márta Svéd presenta nun dos capítulos do seu libro Journey into Geometries (AMS/MAA, 1991). Os dous capítulos anteriores:
Sexa $\alpha$ unha circunferencia pasando por $O$ e $P$ un punto que non estea en $\alpha$. Consideremos agora $t$, a recta tanxente a $\alpha$ en $O$ e a súa perpendicular $p$. Trazamos o segmento $OP$ e a súa mediatriz $m$. O punto de intersección de $m$ e $p$, ao que chamaremos $C$, é o centro da circunferencia $\omega$ que pasa por $P$ e é tanxente a $\alpha$ en $O$. Traducido á linguaxe da W-xeometría, $\omega$ é a única W-recta paralela a $\alpha$ que pasa por un punto $P\notin \alpha$.
No caso de que $P \in t$ a propia recta $t$ sería a W-recta paralela a $\alpha$ pasando por $P$
Cando se trata de trazar W-paralelas Márta Svéd advírtenos dunha aparente inconsistencia. Se fixemos ben as cousas a relación "ser W-paralela a" debería ser unha relación de equivalencia entre W-rectas. Porén se nos fixamos na seguinte figura veremos que non se verifica a propiedade transitiva.
U-la a falacia?
Efectivamente, $a$ é paralela a $b$ (ten en conta que non se cortan en $O$ pois este punto non existe na $W$ xeometría) e $a$ e $\alpha$ son tamén paralelas. Pero é obvio que $b$ e $\alpha$ se cortan. Onde está a falacia neste argumento?
Máis alá
Nas anteriores liñas fixemos o exercicio de irmos comprobando os cinco postulados clásicos euclidianos pero podemos, e debemos, ir máis alá. Digo que debemos porque é ben sabido que Euclides non pasaría os estándares actuais para o estalbecemento dunha teoría axiomática. Non temos que remitirnos á revisión feita por Hilbert pois temos noticia que desde a época clásica houbo críticas aos Elementos. O V postulado explica cando se cortan dúas rectas, pero non temos ningún que nos indique como se cortan dúas circunferencias, compriría garantir a continuidade das liñas. Polo visto na anteriormente, na epígrafe adicada ao Postulado III, o corte de W-circunferencias compórtase da mesma maneira que o de circunferencias.
Noutras entradas demostramos que a inversión conserva os ángulos. En consecuencia a W-xeometría non só nos permite trasladar ángulos rectos (postulado IV), senón que o fai con calquera tipo de ángulos.
Nós aquí traballamos coa formulación de Playfair do V postulado: "por un punto exterior a unha recta pasa unha única paralela". Mais sabemos que este enunciado é equivalente a que a suma dos ángulos dun triángulo sexa de 180º. Márta Svéd ofrece a explicación deste caso. Tamén explica como facer un exercicio que aínda non tratamos: o trazado de perpendiculares.
Dada unha W-recta $\alpha$ e un W-punto $P$, tracemos a tanxente $t$ a $\alpha$ por $O$ e a mediatriz $m$ do segmento $OP$ que se cortarán no punto $C$ que será o centro da circunferencia $\pi$ que pasa por $P$ e por $O$. $\pi$ é perpendicular a $\alpha$
trazado de W-perpendiculares
Teriamos que considera un caso especial, se $P$ estivera na recta perpendicular a $t$ esa perpendicular tamén sería perpendicular a $\alpha$. Aquíi non me molestei moito en distinguir "perpendicular" de "W-perpendicular" porque a medida de ángulos na W-xeometría coincide coa da xeometría euclidiana usual.
Do que se trata é de comprobar que a W-xeometría descrita nesa entrada, é unha xeometría euclidiana. Para iso estamos comprobando que verifica os postulados de Euclides. Xa o fixeramos cos tres primeiros. Continuemos.
IV postulado
A miña primeira intención foi a de despachar este postulado nun par de frases. Lembremos que xa demostramos que a inversión conserva os ángulos. Parece que non hai máis que engadir. Pero parémonos a reflexionar.
O IV postulado di que "todos os ángulos rectos son iguais entre si". Tendo en conta que entre as nocións comúns dos Elementos de Euclides temos unha que di que "cousas iguais a unha mesma cousa son iguais entre si", que necesidade habería de engadir o IV postulado? Ademais os tres primeiros postulados remiten a unha construción con regra e compás, porén o IV non o fai. Tense especulado que pode ser unha interpolación engadida por algún copista baixo o argumento de que a igualdade de dous ángulos rectos apenas se usa nas 465 proposicións dos trece libros dos Elementos, e cando se fai, non é de xeito explícito.
As lecturas modernas deste postulado, debidas a Klein e a Clifford, remiten a unha interpretación do IV postulado como aquel que permitiría o desprazamento dun ángulo recto a calquera punto do plano. Na W-xeometría un W-desprazamento estará formado por W-reflexións, isto é, por inversións. Teñamos presente que estamos construíndo unha xeometría euclidiana. De aí que os desprazamentos (translacións, xiros ou reflexións) deben poder obterse a partir das reflexións. Isto é, se explicamos como son as reflexións, teremos determinados todos os desprazamentos. Pois ben, as W-reflexións serán as inversións respecto das W-rectas (isto é: respecto das circunferencias que pasan por O)
A cuestión do desprazamento
Nunca na Grecia clásica houbo mención á problemática do desprazamento, con todo procuraremos ver que na W-xeometría non se produce unha distorsión das W-distancias cando se aplica a inversión. Para iso axudarémonos dun libro ao que fai referencia Márta Svéd, Non-euclidean Geometry, de Roberto Bonola (1874-1911), (Open Court Publishing Company, 1912).
Hai unha publicación do libro de Bonola en español, Geometrías no euclidianas (Calpe, 1923) que é a tradución da edición en italiano do 1906. Estas edicións só conteñen 3 apéndices. Desafortunadamente o que nos interesa vén no quinto apéndice, só presente na edición inglesa, pois é nese derradeiro apéndice onde Bonola traballa coa xeometría recollida por Márta Svéd.
Comprobemos que na W-xeometría se verifica o seguinte teorema
Teorema. A inversión por unha W-recta conserva a W-distancia
Pasemos a demostralo. Sexa $AB$ un W-segmento e $\omega$ a circunferencia de centro $C$ que pasa por $O$ e $D$. Fagamos respecto desta circunferencia a inversión do W-segmento $AB$ en $A'B'$ Sexa $D$ o punto de corte de $\omega$ e a circunferencia que pasa por $A$, $B$ e $O$.
O noso propósito será demostrar que este cociente é 1.
Pola definición de inversión: $$CA\cdot CA'=CD\cdot CD$$
$$\frac{CA}{CD}=\frac{CD}{CA'}$$
Entón, polo criterio LAL os triángulos $CAD$ e $CA'D$ son semellantes (comparten o ángulo en $C$ e os lados que o determinan son proporcionais). De aí que teñamos as seguintes proporcións:$$\frac{DA}{DA'}=\frac{CA}{CD}=\frac{CD}{CA'}\quad\quad [1]$$
Outra vez pola definición de inversión: $$CA\cdot CA'=CO\cdot CO$$
Análogamente teremos que os triángulos $CAO$ e $CA'O$ son semellantes e $$\frac{CA}{CO}=\frac{CO}{CA'}=\frac{OA}{OA'}\quad\quad [2]$$
Comeza aquí unha serie de tres entradas sobre unha curiosa xeometría. Ben, en realidade non é este o principio. Este xa foi publicado neste mesmo blogue noutras tres entradas:
A proxección estereográfica reencontrada. Aquí explícase en que consiste a proxección estereográfica e danse algunhas propiedades da mesma, como a de que leva circunferencias en circunferencias ou que conserva os ángulos.
A inversión proxectada. Nesta entrada relátase en que consiste a inversión respecto dunha circunferncia e como se pode obter a inversión a partir da proxección estereográfica. Isto último permite revisar cal é a inversión de circunferencias, tanto das que pasan polo centro da circunferencia inversiva como as que non; tamén explica por que a inversión conserva ángulos.
Un regalo da xeometría inversiva. Esta ligazón lévanos a unha fórmula que relaciona a lonxitude dun segmento $AB$ coa do seu inverso $A'B'$. Como regalo obtemos unha fermosa demostración do teorema de Ptolomeo.
A curiosa xeometría de Márta Svéd
No verán pasado fun ao curso da USC "Matemáticas húngaras", organizado polo profesor Jorge Losada Rodríguez. Unha das conferencias correu a cargo da coñecida divulgadora Marta Macho, da Universidade do País Vasco, trataba sobre as mulleres matemáticas de Budapest. Falou da vida, obra e aventuras de moitas mulleres húngaras. Unha delas foi a Marta Wachsberger (1910-2005) , coñecida como Marta Svéd despois do seu matrimonio, fuxiría a Australia no 1935, escapando do horror nazi. Con 75 anos defendería a súa tese doctoral na Universidade de Adelaida.
Marta Macho deunos a coñecer un curioso libro escrito por Marta Svéd, Journey into geometries (AMS/MAA, 1991). Trátase dun orixinal diálogo entre un tal Dr. Whatif, Lewis Carroll, autor de Alicia no país das marabillas, a propia Alicia e moitos outros dos personaxes do famoso libro de Carroll (Humpty Dumpty, Tweedledee e Tweedledum, a Raíña Vermella, a Lebre de Marzo,...). Alicia xoga o papel de alumna avantaxada; Lewis Carroll representa as matemáticas decimonónicas. O significativo antropónimo, Dr. Whatiff, desvela o carácter principal dun individuo sempre disposto a innovar e a xogar con novas hipóteses. Para rebaixar as expectativas de quen estivera pensando en ler este libro, cómpre que saiba que nel hai moitas matemáticas ata o punto de que cada capítulo remata cun boletín de exercicios. O libro conta cun pequeno prefacio do xeómetra H.S.M. Coxeter (1907-2003) e cunha boa colección de ilustracións que axudan moito á lectura. Estas son obra do tamén matemático John Stilwell (1942-)
En Journey into geometries os personaxes viaxan por distintas ideas xeométricas. No primeiro capítulo trabállase a potencia dun punto respecto dunha circunferencia; o segundo trata sobre a inversión; o cuarto ocúpase da xeometría hiperbólica, o quinto da xeometría do disco de Poincairé e o sexto e último capítulo está dedicado á xeometría proxectiva.
E o terceiro? O terceiro, desde o meu punto de vista, é o máis interesante de todos. Nel Marta Svéd presenta unha xeometría euclidiana dunha fasquía extravagante. No libro esa xeometría recibe o nome de "xeometría do Dr. Whatif". Por simplicidade referireime a ela como xeometría W (en referencia ao Dr., ou quizais, aínda mellor, en referencia a Wɐɹʇɐ). Co fin de distinguilos dos conceptos da xeometría euclidiana usual aos da W-xeometría denominareinos usando ese símbolo: W-puntos, W-rectas, W-rectas, W-distancias...
A W-xeometría é unha xeometría do plano na que eliminamos un punto ao que chamaremos punto O. En compesación engadimos un novo punto, o do infinito, $P_{\infty }$ . As W-rectas serán as circunferencias e as rectas que pasen por O. Estas últimas serán as W-rectas que conteñan o punto do infinito. Tendo en conta que podemos considerar as rectas como circunferencias de raio infinito estariamos en disposición de resumir dicindo que as W-rectas son as circunferencias que conteñen a O (pero sen o punto O, por suposto). Así, os W-segmentos serán ben arcos de circunferencia, ben segmentos usuais nas rectas que pasan polo punto do infinito, ben segmentos que conteñan ou teñan como extremo ao punto do infinito. Os W-ángulos coincidirán cos ángulos da xeometría euclidiana usual.
Pasemos a comprobar que a W-xeometría é euclidiana, isto é, que verifica os cinco postulados propostos por Euclides nos Elementos.
I postulado
Un dos resultados da xeometría plana máis coñecidos é o que nos di que por tres puntos sempre podemos trazar unha circunferencia. Aplicando este resultado á W-xeometría teriamos que dados dous W-puntos $A$ e $B$, e dado $O$, poderemos trazar a W-recta que pasa por eles. Se están aliñados volveremos a recordar que podemos considerar a recta como unha circunferencia de raio infinito.l Dado un punto calquera $A$ e o punto do infinito $P_{\infty }$ sempre podemos trazar a recta que pasa por eles pois é a recta euclidiana que pasa por $A$ e por $O$ Así que a W-xeometría verifica o I postulado euclidiano.
Postulado II
Consideremos unha circunferencia que pase por O (da que eliminamos precisamente o punto O). Dado nela un arco de circunferencia $AB$ sempre o poderemos ampliar a outro arco maior $A'B'$ en calquera dos dous sentidos.
Traduzamos isto en termos da W-xeometría. Teremos que dado un W-segmento $AB$ poderemos prolongalo a outro $A'B'$. Este é o II postulado da xeometría euclidiana. Se partimos dunha recta que pasa por O, pode suceder que o segmento $AB$ sexa finito, nese caso basta con remitirnos á xeometría euclidiana clásica
Algúns casos do Postulado II
No caso de que o segmento conteña a $P_{\infty }$, tampouco teremos dificultades tanto para ampliar o segmento $AB$ a $A'B'$ como o segmento $AP_{\infty }$ a outro $AP_{\infty }'$
Postulado II con punto do infitnito
Postulado III
O III postulado di que debemos ser quen de "debuxar unha circunferencia con calquera centro e distancia". Velaquí que debemos explicar como medir distancias nesta peculiar xeometría. Marta Svéd ofrécenos unha analoxía para achegarnos a este tópico.
Supoñamos que, sen usar o compás, queremos trazar unha circunferencia de centro $C$ e pasando por un punto $P$ na "anticuada" xeometría euclidiana. Poderiamos facelo da seguinte maneira. Consideremos unha recta $r$ pasando por $C$ para obter $P'$, a reflexión de $P$ respecto de $r$. $P'$ será outro punto da circunferencia. Xa que logo, a circunferencia estará formada por todas as reflexións de $P$ respecto de todas as rectas pasando polo centro $C$. Pois ben, a W-reflexión non será outra cousa que a inversión. Unha W-circunferencia poderá obterse invertendo un punto $P$ polas circunferencias que pasan por $O$ e por $C$.
Unha circunferencia que pase por $O$ e $C$ terá o seu centro na mediatriz $m$ do segmento $OP$. Cada unha delas invertirá un punto $P$ noutro $P'$ e irá xenerando a W-circunferencia de centro $C$. Ao conxunto de todas estas circunferencias coñéceselle como feixe elíptico de circunferencias. Para trazar a W-circunferencia de centro $C$ pasando por $P$ podes mover o punto $X$ ou premer no play.
Se xogas un pouco coa aplicación verás que a W-circunferencia é unha circunferencia euclidiana pero o seu centro $C$ non coincide co centro na xeometría euclidiana. A razón é que as distancias na W-xeometría non coinciden coas euclidianas. A chave para a definición das W-distancias está na fórmula que vimos noutra ocasión que nos indica cal é a lonxitude dun segmento $A'B'$ que resulta da inversión doutro $AB$ por unha circunferencia de raio $R$: $$A'B'=\frac{R^{2}\cdot AB}{OA\cdot OB}$$
Para simplificar tomaremos $R=1$ e definiremos a W-distancia entre dous puntos $A$ e $B$ como $$ d_{W}\left ( AB \right )=\frac{ AB}{OA\cdot OB}$$
Desta definición é inmediato verificar tanto que esta nova definición de distancia é simétrica como que obteremos sempre números positivos (só será 0 se $A=B$). A desigualdade triangular da W-distancia é unha consecuencia da desigualdade de Ptolomeo.
Quedan por comprobar os dous postulados máis polémicos de Euclides. Farémolo nas dúas seguintes entradas ([2] e [3])