Amosando publicacións coa etiqueta Paul J. Nahin. Amosar todas as publicacións
Amosando publicacións coa etiqueta Paul J. Nahin. Amosar todas as publicacións

domingo, 19 de xuño de 2022

Percorridos entre A e B

Nada máis simple que o que podemos ver nesta imaxe, un segmento entre dous puntos A e B. Nun principio parece que tan pouca cousa non pode dar para moito. Non é así.

Comecemos polo principio. No principio foi Euclides (III a.C.). Nos seus Elementos partía de 5 postulados. Recollo os seguintes aspectos e comentarios da edición feita pola USC, con tradución de Ana Gloria Rodríguez e Celso Rodríguez. O primeiro postulado era este:

[Postúlese] 1. Trazar unha liña recta dende un punto calquera ata un punto calquera

Precisamente nesa edición coméntase que isto implica a existencia de (polo menos) dous puntos. Tamén se resalta que, nun principio, non se pode trazar unha recta arbitraria a partir dun punto. A pesar do seu evidente éxito, no transcurso dos séculos Euclides había de ser criticado en moitos aspectos. Como xa teño comentado as críticas comezaban xa co primeiro postulado que establece a existencia dunha recta entre dous puntos calquera pero non se asegura a unicidade da mesma a pesar de que Euclides tamén dou isto por certo sen postulalo previamente. Decatémonos de que aínda non se estableceu que a liña poida ser infinita. Isto último será materia do segundo postulado:

[Postúlese] 2. E prolongar en liña recta de forma continua unha recta finita.

Este principio había de revelarse fundamental ao profundizar nos fundamentos da xeometría. Cando Giovanni Gerolamo Saccheri (1667-1733) quixo establecer a xeometría euclidiana como a única posible. Para este propósito elaborou dúas xeometrías alternativas nas que non se verificaba o polémico quinto postulado co obxectivo de chegar a unha contradición. Esas xeometrías serían posteriormente denominadas elíptica e hiperbólica. Na xeometría elíptica non tardaría en demostrar a finitude das rectas, a negación directa do segundo postulado, unha contradición evidente que era o que estaba buscando Saccheri. Despois creu obter unha "falsidade manifesta" dentro da xeometría hiperbólica pero foi unha saída en falso. 

Non quero insistir na axiomática da xeometría pois a este tema xa adicara un par de entradas (Axiomas de Euclides, Hilbert e Tarski.1 e Axiomas de Euclides, Hilbert e Tarski.2). O segmento AB é o esquema de moitos problemas das matemáticas escolares. Pensemos só en todos aqueles que teñen como protagonistas do seu enunciado un par de trens que parten de dous puntos A e B. Como non me quero meter nesta selva, inzada de problemas de todo tipo, voume centrar nun que recollo dun libro de título ben curioso. Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, de Paul J. Nahin. De seguido presento unha versión libre da cuestión

Un paxaro vai de A a B e despois volve de B a A a unha velocidade v. Como é habitual neste tipo de propostas v é constante e o cambio de sentido é maxicamente inmediato. Sexa d a distancia entre os puntos A e B e t=2d/v o tempo que tarda en facer o percorrido de ida e volta. Introduzamos agora unha dificultade. Imos supoñer que o traxecto faise en presenza dun vento dunha velocidade constante w. Tamén consideraremos que w<v. Cando o vento sopre no mesmo sentido do corredor as velocidades súmanse : v+w. Cando o vento vai en sentido contrario ao corredor as velocidades réstanse: v-w. A cuestión é se o tempo que se tarda en facer o percorrido é menor con vento ou sen el.

Seguindo a Paenza, o mellor que poderiamos facer agora sería pensar no problema, quizais pensar nalgúns valores particulares para explorar, quizais modificar algo as condicións, pensar en casos extremos, en axudarnos doutro paxaro que parta de B mentras o primeiro parte de A, elaborar unha estratexia de abordaxe e levala a cabo,... Conviña facer algo disto antes de seguir lendo.

Paxaro indo de A a B

As condicións do problema dan  a impresión de que a pregunta garda unha trampa pois non se ten en conta unha terceira posibilidade, que ademais parece a máis lóxica, a de que o paxaro tarde o mesmo tempo con vento e sen el. Sorprendentemente a resposta non é esta. Poñamos por caso que a velocidade do paxaro é de 10 km/h e que a distancia entre A e B é de 10 km. Neste caso o tempo empregado no traxecto de ida e volta é de 2 horas. Cun vento soprando a 2 km/h o tempo empregado será:

$$\frac{10}{12}+\frac{10}{8}=\frac{200}{96}=\frac{25}{12}>2$$

Se xeneralizamos veremos que o tempo do percorrido é maior con vento que sen el:

$$\frac{d}{v+w}+\frac{d}{v-w}=\frac{d\left ( v-w \right )+d\left ( v+w \right )}{\left ( v+w \right )\left ( v-w \right )}=\\= \frac{dv-dw+dv+dw}{v^{2}-w^{2}}=\frac{2dv}{v^{2}-w^{2}}=\frac{2dv/v^{2}}{\left (v ^{2} -w^{2}\right )/v^{2}}=\\=\frac{2d/v}{1-\left ( w/v \right )^{2}}=\frac{t}{1-\left ( w/v \right )^{2}}\geq t$$
O vento non ten por que soprar na dirección marcada polo segmento AB pois se o fai noutra dirección só nos interesará a proxección do vector que indica a velocidade do vento sobre AB. Isto lévanos a sospeitar que se facemos un percorrido co mesmo punto de inicio e fin, o resultado vaia ser o mesmo. A sospeita é acertada, e quen a queira ver desenvolta pode consultar o libro de Paul Nahin. Isto ten unha consecuencia práctica importante no mundo do atletismo. En presenza de ventos de certa intensidade non se recoñecen determinadas marcas deportivas. Polo que acabamos de contar, nas carreiras nas que se dá un número enteiro de voltas á pista as marcas veríanse sempre perxudicadas polo vento, en consecuencia neste tipo de probas non ten sendido anular as marcas obtidas en presenza de vento. Pode que este resultado lle interese ao compañeiro Paulo González Ogando, que acaba de publicar un libro titulado Matemáticas y deporte (Catarata 2022)

xoves, 31 de marzo de 2022

Un pequeno problema de optimización

Nas clases de matemáticas sucede algo que case non pasa nas outras. É moi fácil reducilas a unha lista de receitas. Co avance do curso e dos anos vanse acumulando estas receitas ata a saturación. Finalmente non temos nada de matemáticas e só fica unha lista de algoritmos sen sentido. Moitas veces o paso dunhas matemáticas sustentadas na razón, a unhas matemáticas puramente algorítmicas é moi sutil. Non creo que haxa unha forma boa de explicar as matemáticas ben, pero si que a hai de facelo mal. A mellor forma de coller o mal camiño é non reflexionar e non ter unha idea bastante clara das mensaxes que hai que transmitir.

Xa teño contado nalgunha ocasión que tiven uns profesores de matemáticas moi bos. A isto engadíseselle a alegría de que me gustaba a materia. Por iso gozaba moito das clases; tanto que teño vívidos recordos de impresións e pensamentos que tiven daquela. Todo isto axudoume moito despois. Lembro, por exemplo o seguinte problema de optimización proposto nunha clase de 3º de BUP, ano 1984. Por contextualizar, antes xa estudáramos as derivadas das funcións elementais (con demostracións incluídas). Tamén fixéramos exercicios de representación gráfica.

No 1984 había clases de matemáticas en galego

Aínda que penso que se ve na imaxe, transcribo o enunciado:

Calculade dous números que sumen 10 e o producto sexa máximo

[Nota ortográfica: "producto" é da norma RAG anterior a 2003]. Para resolvelo basta con trasladar o enunciado a unha linguaxe matemática para permitir a súa manipulación dentro do contexto do traballo que estabamos a realizar: temos que achar dous valores $x_{1}$ e $x_{2}$ tales que o seu produto $P_{2}=x_{1}\cdot x_{2}$ sexa máximo baixo a condición de que a súa suma sexa 10. Recordo perfectamente que, a pesar de que xa fixéramos unha boa colección de exercios de optimización de carácter xeométrico, non sabía como abordar este problema. De todas formas tiña a solución porque fixera o seguinte razoamento: "1 e 9 suman 10, o seu produto é 9; 2 e 8 suman 10 e o seu produto é 16; 3 e 7 suman 10 e o seu produto é 21; 4 e 6 teñen de produto 24. Finalmente $5\cdot 5=25$ é a solución.[Nese momento asaltoume a dúbida] E os decimais?... 4,5 e 5,5 teñen de produto 24,75. Entón, parece que a solución é $5\cdot 5=25$."

Con todo, non estaba contento con ese método. Sabía que non verificara máis que uns poucos casos. Por outra banda a solución dada posteriormente polo profesor deixárame algo decepcionado. Parecíame demasiada parafernalia para unha conclusión tan obvia.

A cuestión é: por que non fun quen de resolver o problema coas ferramentas que tiña na miña man e que xa aparendera noutros problemas de optimización? Incluso máis, é evidente que, dentro dos problemas de optimización, este problema era máis sinxelo que outros xa traballados. 

A resposta está no tipo de problema. Os outros problemas de optimización que tratados eran de carácter xeométrico. O bloqueo viña simplemente do aspecto do problema. Aquí aprendín que é importante afrontar problemas de tipos moi distintos. Só un entrenamento de resolución de cuestións variadas vai poder levarnos a "facer nosas" as técnicas que se están a aprender. Co tempo tamén me decatei que o basto razoamento que fixera eu non era práctica común entre a xeneralidade do alumnado. Algúns só buscan o algoritmo que hai que aplicar neste caso e non fan tentativas de casos particulares. Aquí aprendín que, aínda que explique a técnica para resolver un problema, tamén debo relatar divagacións coma se non soubese resolvelo. Como exemplo, podo contar en alto o mesmo que escribín antes, aquilo que pensaba cando intentaba resolver o problema anterior. En xeral debo preguntarme en alto: coñezo algún problema semellante?, que pasa se aquí poño estes outros números?, e que pasa nos casos extremos?, convén facer esquemas, táboas,...?, que tipo de notación debo escribir?. E sempre: que é o que sei? que é o que quero conseguir? Podo relacionar unha cousa coa outra?

Unha ensinanza máis é que debo deixar tempo na aula ao alumnado para que intente resolver os problemas. Non ten sentido que o profesor ametralle aos pobres discentes nunha restra de demostracións de habilidade en problemas que sabe facer sobradamente. 

Finalmente, tamén prodemos aprender moito reflexionando sobre a solución dada. Case sempre está na nosa man abstraer algo máis, xeneralizar.... Por exemplo convén considerar o seguinte problema:

Calcula dous números que sumen S e que teñan produto máximo

Sexa $P=x_{1}\cdot x_{2}$ o valor a maximizar. Podemos aproveitar a condición $S=x_{1}+x_{2}$ facendo $x_{2}=S-x_{1}$. Así o produto só depende dunha variable: $P_ {2}(x_{1})=x_{1}\cdot \left (  S-x_{1}\right )$ e podemos aplicar o procedemento habitual de derivación:

$$P'_{2}(x_{1})=\left (  S-x_{1}\right )-x_{1}=S-2x_{1}\\P'_{2}(x_{1})=0 \;\;\; S=2x_{1}\Rightarrow x_{1}=\frac{S}{2}\Rightarrow x_{2}=x_{1}=\frac{S}{2}\\P_{2}=\frac{S}{2}\left ( S-\frac{S}{2} \right )=\frac{S}{2}\cdot \frac{S}{2}=\left ( \frac{S}{2} \right )^{2}$$

Neste punto estamos en boa disposición para abordar un problema máis xeral.

Determina n números que sumen S e teñan produto máximo

Pensemos primeiro no caso de 3 números: $x_{1}+x_{2}+x_{3}=S$. Por  un momento supoñamos que coñecemos o primeiro valor, $x_{1}$. Entón o problema reducirías e a determinar os outros dous valores baixo a condición de que a súa suma fose $x_{2}+x_{3}=S-x_{1}$. Entón o produto:

$$P_{3}(x_{1})=x_{1}x_{2}x_{3}=x_{1}P_{2}\left ( \frac{S-x_{1}}{2} \right )=x_{1}\left ( \frac{S-x_{1}}{2} \right )^{2}$$

Derivando: $P'_{3}(x_{1})=\left ( \frac{S-x_{1}}{2} \right )^{2}-\left ( \frac{S-x_{1}}{2} \right )x_{1}$

Se igualamos a derivada a 0 obtemos:

$$\left ( \frac{S-x_{1}}{2} \right )^{2}=\left ( \frac{S-x_{1}}{2} \right )x_{1}$$

Dividindo pola expresión entre parénteses obteremos

$$\left ( \frac{S-x_{1}}{2} \right )=x_{1}\\x_{1}=\frac{S}{3}$$

Entón $x_{2}+x_{3}=\frac{2S}{3}$, e, polo visto no caso de dous números $x_{2}=x_{3}=\frac{S}{3}$

Velaí que o produto máximo no caso de n=3 será $P_{3}=\left ( \frac{S}{3} \right )^{3}$

Xa temos todo preparado para a indución. Supoñamos que temos n-1 números que teñen unha suma dada S: $x_{1}+x_{2}+...+x_{n-1}=S$ e que o seu produto máximo se dá cando $x_{1}=x_{2}=...=x_{n-1}=\frac{S}{n-1}$. Entón nese caso o valor dese produto máximo será $P_{n-1}=\left ( \frac{S}{n-1} \right )^{n-1}$. Vexamos que se verifica o caso n-ésimo.

Partamos de n números tales que $x_{1}+x_{2}+...+x_{n-1}+x_{n}=S$. Podemos aplicar a hipótese de indución aos n-1 últimos números que suman $x_{2}+...+x_{n-1}+x_{n}=S-x_{1}$. Neste caso o produto máximo será:

$$P_{n}(x_{1})=x_{1}P_{n-1}\left ( S-x_{1} \right )=x_{1}\left ( \frac{S-x_{1}}{n-1} \right )^{n-1}$$

Derivando e igualando a derivada a cero:

$$P'_{n}(x_{1})=\left ( \frac{S-x_{1}}{n-1} \right )^{n-1}-\left ( \frac{S-x_{1}}{n-1} \right )^{n-2}\cdot x_{1}\\\left ( \frac{S-x_{1}}{n-1} \right )^{n-1}=\left ( \frac{S-x_{1}}{n-1} \right )^{n-2}\cdot x_{1}\\ \frac{S-x_{1}}{n-1} =x_{1}\\S-x_{1}=nx_{1}-x_{1}\\x_{1}=\frac{S}{n}$$

Entón:

$$P_{n}=\frac{S}{n}\left ( \frac{S-\frac{S}{n}}{n-1} \right )^{n-1}=\frac{S}{n}\left ( \frac{S\left ( n-1 \right )}{n\left ( n-1 \right )} \right )^{n-1}=\frac{S}{n}\left ( \frac{S}{n} \right )^{n-1}=\left ( \frac{S}{n} \right )^{n}$$

Recollín esta derivación do libro de Paul J. Nahin, When Least Is Best, que me gustou polo enrevesada que é pois temos a alternativa de facer outro razoamento. Volvamos ao caso de cando tiñamos dous números $x_{1}$ e $x_{2}$ e reflexionemos por que teñen que ser iguais para poder obter un produto máximo. Se fosen distintos, consideremos a súa media $x_{m}$. Entón $x_{1}=x_{m}-d$ e $x_{2}=x_{m}+d$. Ademais $x_{1}+x_{2}=x_{m}+x_{m}$. Pola contra o seu produto 

$$x_{1}\cdot x_{2}=\left ( x_{m}+d \right )\left ( x_{m}-d \right )=x_{m}^{2}-d^{2}<x_{m}^{2}$$

Polo tanto, se queremos maximizar o produto, non podemos coller números distintos. Esta mesma razón serviría para cando teñamos n números. Se un par deles fosen distintos poderiamos substituílos pola súa media, obtendo un produto maior. 

Xa sei por que me gustan as matemáticas. Porque cando me mergullo nelas síntome como un adolescente intentando resolver un pequeno problema de optimización.