Amosando publicacións coa etiqueta xeometría. Amosar todas as publicacións
Amosando publicacións coa etiqueta xeometría. Amosar todas as publicacións

luns, 6 de maio de 2024

A curiosa xeometría de Márta Svéd. O V postulado e máis alá (e 3)

Este é o terceiro e derradeiro capítulo da serie adicada a unha xeometría que a matemática húngara Márta Svéd presenta nun dos capítulos do seu libro Journey into Geometries (AMS/MAA, 1991). Os dous capítulos anteriores:

O V postulado


Sexa $\alpha$ unha circunferencia pasando por $O$ e $P$ un punto que non estea en $\alpha$. Consideremos agora $t$, a recta tanxente a $\alpha$ en $O$ e a súa perpendicular $p$. Trazamos o segmento $OP$ e a súa mediatriz $m$. O punto de intersección de $m$ e $p$, ao que chamaremos $C$, é o centro da circunferencia $\omega$ que pasa por $P$ e é tanxente a $\alpha$ en $O$. Traducido á linguaxe da W-xeometría, $\omega$ é a única W-recta paralela a $\alpha$ que pasa por un punto $P\notin \alpha$.

No caso de que $P \in t$ a propia recta $t$ sería a W-recta paralela a $\alpha$ pasando por $P$

Cando se trata de trazar W-paralelas Márta Svéd advírtenos dunha aparente inconsistencia. Se fixemos ben as cousas a relación "ser W-paralela a" debería ser unha relación de equivalencia entre W-rectas. Porén se nos fixamos na seguinte figura veremos que non se verifica a propiedade transitiva.

U-la a falacia?

Efectivamente, $a$ é paralela a $b$ (ten en conta que non se cortan en $O$ pois este punto non existe na $W$ xeometría) e $a$ e $\alpha$ son tamén paralelas. Pero é obvio que $b$ e $\alpha$ se cortan. Onde está a falacia neste argumento?

Máis alá

Nas anteriores liñas fixemos o exercicio de irmos comprobando os cinco postulados clásicos euclidianos pero podemos, e debemos, ir máis alá. Digo que debemos porque é ben sabido que Euclides non pasaría os estándares actuais para o estalbecemento dunha teoría axiomática. Non temos que remitirnos á revisión feita por Hilbert pois temos noticia que desde a época clásica houbo críticas aos Elementos. O V postulado explica cando se cortan dúas rectas, pero non temos ningún que nos indique como se cortan dúas circunferencias, compriría garantir a continuidade das liñas. Polo visto na anteriormente, na epígrafe adicada ao Postulado III, o corte de W-circunferencias compórtase da mesma maneira que o de circunferencias.

Noutras entradas demostramos que a inversión conserva os ángulos. En consecuencia a W-xeometría non só nos permite trasladar ángulos rectos (postulado IV), senón que o fai con calquera tipo de ángulos. 

Nós aquí traballamos coa formulación de Playfair do V postulado: "por un punto exterior a unha recta pasa unha única paralela". Mais sabemos que este enunciado é equivalente a que a suma dos ángulos dun triángulo sexa de 180º. Márta Svéd ofrece a explicación deste caso. Tamén explica como facer un exercicio que aínda non tratamos: o trazado de perpendiculares.

Dada unha W-recta $\alpha$ e un W-punto $P$, tracemos a tanxente $t$ a $\alpha$ por $O$ e a mediatriz $m$ do segmento $OP$ que se cortarán no punto $C$ que será o centro da circunferencia $\pi$ que pasa por $P$ e por $O$. $\pi$ é perpendicular a  $\alpha$ 

trazado de W-perpendiculares
Teriamos que considera un caso especial, se $P$ estivera na recta perpendicular a $t$ esa perpendicular tamén sería perpendicular a $\alpha$. Aquíi non me molestei moito en distinguir "perpendicular" de "W-perpendicular" porque a medida de ángulos na W-xeometría coincide coa da xeometría euclidiana usual.

xoves, 2 de maio de 2024

A curiosa xeometría euclidiana de Márta Svéd. O desprazamento (2)

Márta Svéd

Esta entrada é a continuación da anterior: A curiosa xeometría de Márta Svéd.Introdución (1) Para poder entender o que vén de seguido cómpre botarlle un ollo.

Do que se trata é de comprobar que a W-xeometría descrita nesa entrada, é unha xeometría euclidiana. Para iso estamos comprobando que verifica os postulados de Euclides. Xa o fixeramos cos tres primeiros. Continuemos.


IV postulado

A miña primeira intención foi a de despachar este postulado nun par de frases. Lembremos que xa demostramos que a inversión conserva os ángulos.  Parece que non hai máis que engadir. Pero parémonos a reflexionar.

O IV postulado di que "todos os ángulos rectos son iguais entre si". Tendo en conta que entre as nocións comúns dos Elementos de Euclides temos unha que di que "cousas iguais a unha mesma cousa son iguais entre si", que necesidade habería de engadir o IV postulado? Ademais os tres primeiros postulados remiten a unha construción con regra e compás, porén o IV non o fai. Tense especulado que pode ser unha interpolación engadida por algún copista baixo o argumento de que a igualdade de dous ángulos rectos apenas se usa nas 465 proposicións dos trece libros dos Elementos, e cando se fai, non é de xeito explícito. 

As lecturas modernas deste postulado, debidas a Klein e a Clifford,  remiten a unha interpretación do IV postulado como aquel que permitiría o desprazamento dun ángulo recto a calquera punto do plano. Na W-xeometría un W-desprazamento estará formado por W-reflexións, isto é, por inversións. Teñamos presente que estamos construíndo unha xeometría euclidiana. De aí que os desprazamentos (translacións, xiros ou reflexións) deben poder obterse a partir das reflexións. Isto é, se explicamos como son as reflexións, teremos determinados todos os desprazamentos. Pois ben, as W-reflexións serán as inversións respecto das W-rectas (isto é: respecto das circunferencias que pasan por O) 

A cuestión do desprazamento

Nunca na Grecia clásica houbo mención á problemática do desprazamento, con todo procuraremos ver que na W-xeometría non se produce unha distorsión das W-distancias cando se aplica a inversión. Para iso axudarémonos dun libro ao que fai referencia Márta Svéd, Non-euclidean Geometry, de Roberto Bonola (1874-1911), (Open Court Publishing Company, 1912).

Hai unha publicación do libro de Bonola en español, Geometrías no euclidianas (Calpe, 1923) que é a tradución da edición en italiano do 1906. Estas edicións só conteñen 3 apéndices. Desafortunadamente o que nos interesa vén no quinto apéndice, só presente na edición inglesa, pois é nese derradeiro apéndice onde Bonola traballa coa xeometría recollida por Márta Svéd.

Comprobemos que na W-xeometría se verifica o seguinte teorema

Teorema. A inversión por unha W-recta conserva a W-distancia

Pasemos a demostralo.
Sexa $AB$ un W-segmento e $\omega$ a circunferencia de centro $C$ que pasa por $O$ e $D$. Fagamos respecto desta circunferencia a inversión do W-segmento $AB$ en $A'B'$ Sexa $D$ o punto de corte de $\omega$ e a circunferencia que pasa por $A$, $B$ e $O$.

$$\frac{d_{W}\left ( AD \right )}{d_{W}\left ( A'D \right )}=\frac{\frac{AD}{OA\cdot OD}}{\frac{A'D}{OA'\cdot OD}}=\frac{AD\cdot OA'}{A'D\cdot OA}$$

O noso propósito será demostrar que este cociente é 1.

Pola definición de inversión: $$CA\cdot CA'=CD\cdot CD$$

$$\frac{CA}{CD}=\frac{CD}{CA'}$$


Entón, polo criterio LAL os triángulos $CAD$  e $CA'D$ son semellantes (comparten o ángulo en $C$ e os lados que o determinan son proporcionais). De aí que teñamos as seguintes proporcións:$$\frac{DA}{DA'}=\frac{CA}{CD}=\frac{CD}{CA'}\quad\quad [1]$$

Outra vez pola definición de inversión: $$CA\cdot CA'=CO\cdot CO$$

Análogamente teremos que os triángulos $CAO$ e $CA'O$ son semellantes e $$\frac{CA}{CO}=\frac{CO}{CA'}=\frac{OA}{OA'}\quad\quad [2]$$

Como $CD=CO$ temos que $[1]=[2]$

"$$\frac{DA}{DA'}=\frac{CA}{CD}=\frac{CD}{CA'}=\frac{CA}{CO}=\frac{CO}{CA'}=\frac{OA}{OA'}$$

Fixándonos na primeira e última proporcións $\frac{DA}{DA'}=\frac{OA}{OA'}$

Tal e como anunciamos ao comezo da demostración, isto implica que $d_{W}\left ( AD \right )=d_{W}\left ( A'D \right )$

Analogamente $d_{W}\left ( BD \right )=d_{W}\left ( B'D \right )$

Daquela $$d_{w}\left ( AB \right )=d_{W}\left ( AD \right )-d_{W}\left ( BD \right )=d_{W}\left ( A'D \right )-d_{W}\left ( B'D \right )=d_{W}\left ( A'B' \right )$$

$$\frac{d_{W}\left ( AD \right )}{d_{W}\left ( A'D \right )}=\frac{\frac{AD}{OA\cdot OD}}{\frac{A'D}{OA'\cdot OD}}=\frac{AD\cdot OA'}{A'D\cdot OA}$$

Con isto quedaría demostrado o teorema. En conclusión, o desprazamento na W-xeometría conserva tanto ángulos como distancias.

No seguinte e derradeiro capítulo desta serie, abordaremos o comportamento da W-xeometría en relación co V postulado de Euclides.

luns, 29 de abril de 2024

A curiosa xeometría euclidiana de Márta Svéd. Introdución (1)

Comeza aquí unha serie de tres entradas sobre unha curiosa xeometría. Ben, en realidade non é este o principio. Este xa foi publicado neste mesmo blogue noutras tres entradas:

  • A proxección estereográfica reencontrada. Aquí explícase en que consiste a proxección estereográfica e danse algunhas propiedades da mesma, como a de que leva circunferencias en circunferencias ou que conserva os ángulos.
  • A inversión proxectada. Nesta entrada relátase en que consiste a inversión respecto dunha circunferncia e como se pode obter a inversión a partir da proxección estereográfica. Isto último permite revisar cal é a inversión de circunferencias, tanto das que pasan polo centro da circunferencia inversiva como as que non; tamén explica por que a inversión conserva ángulos.
  • Un regalo da xeometría inversiva. Esta ligazón lévanos a unha fórmula que relaciona a lonxitude dun segmento $AB$ coa do seu inverso $A'B'$. Como regalo obtemos unha fermosa demostración do teorema de Ptolomeo.

A curiosa xeometría de Márta Svéd

No verán pasado fun ao curso da USC "Matemáticas húngaras", organizado polo profesor Jorge Losada Rodríguez. Unha das conferencias correu a cargo da coñecida divulgadora Marta Macho, da Universidade do País Vasco, trataba sobre as mulleres matemáticas de Budapest. Falou da vida, obra e aventuras de moitas mulleres húngaras. Unha delas foi a Marta Wachsberger (1910-2005) , coñecida como Marta Svéd despois do seu matrimonio, fuxiría a Australia no 1935, escapando do horror nazi. Con 75 anos defendería a súa tese doctoral na Universidade de Adelaida. 

Marta Macho deunos a coñecer un curioso libro escrito por Marta Svéd, Journey into geometries (AMS/MAA, 1991). Trátase dun orixinal diálogo entre un tal Dr. Whatif, Lewis Carroll, autor de Alicia no país das marabillas, a propia Alicia e moitos outros dos personaxes do famoso libro de Carroll (Humpty Dumpty, Tweedledee e Tweedledum, a Raíña Vermella, a Lebre de Marzo,...). Alicia xoga o papel de alumna avantaxada; Lewis Carroll representa as matemáticas decimonónicas. O significativo antropónimo, Dr. Whatiff,  desvela o carácter principal dun individuo sempre disposto a innovar e a xogar con novas hipóteses. Para rebaixar as expectativas de quen estivera pensando en ler este libro, cómpre que saiba que nel hai moitas matemáticas ata o punto de que cada capítulo remata cun boletín de exercicios. O libro conta cun pequeno prefacio do xeómetra H.S.M. Coxeter (1907-2003) e cunha boa colección de ilustracións que axudan moito á lectura. Estas son obra do tamén matemático John Stilwell (1942-)

En Journey into geometries os personaxes viaxan por distintas ideas xeométricas. No primeiro capítulo trabállase a potencia dun punto respecto dunha circunferencia; o segundo trata sobre a inversión; o cuarto ocúpase da xeometría hiperbólica, o quinto da xeometría do disco de Poincairé e o sexto e último capítulo está dedicado á xeometría proxectiva. 

E o terceiro? O terceiro, desde o meu punto de vista, é o máis interesante de todos. Nel Marta Svéd presenta unha xeometría euclidiana dunha fasquía extravagante. No libro esa xeometría recibe o nome de "xeometría do Dr. Whatif". Por simplicidade referireime a ela como xeometría W (en referencia ao Dr., ou quizais, aínda mellor, en referencia a Wɐɹʇɐ). Co fin de  distinguilos dos conceptos da xeometría euclidiana usual aos da W-xeometría denominareinos usando ese símbolo: W-puntos, W-rectas, W-rectas, W-distancias...

A W-xeometría é unha xeometría do plano na que eliminamos un punto ao que chamaremos punto O. En compesación engadimos un novo punto, o do infinito, $P_{\infty }$ . As W-rectas serán as circunferencias e as rectas que pasen por O. Estas últimas serán as W-rectas que conteñan o punto do infinito. Tendo en conta que podemos considerar as rectas como circunferencias de raio infinito estariamos en disposición de resumir dicindo que as W-rectas son as circunferencias que conteñen a O (pero sen o punto O, por suposto). Así, os W-segmentos serán ben arcos de circunferencia, ben segmentos usuais nas rectas que pasan polo punto do infinito, ben segmentos que conteñan ou teñan como extremo ao punto do infinito. Os W-ángulos coincidirán cos ángulos da xeometría euclidiana usual. 

Pasemos a comprobar que a W-xeometría é euclidiana, isto é, que verifica os cinco postulados propostos por Euclides nos Elementos.

I postulado


Un dos resultados da xeometría plana máis coñecidos é o que nos di que por tres puntos sempre podemos trazar unha circunferencia.  Aplicando este resultado á W-xeometría teriamos que dados dous W-puntos $A$ e $B$, e dado $O$, poderemos trazar a W-recta que pasa por eles. Se están aliñados volveremos a recordar que podemos considerar a recta como unha circunferencia de raio infinito.l Dado un punto calquera $A$ e o punto do infinito $P_{\infty }$ sempre podemos trazar a recta que pasa por eles pois é a recta euclidiana que pasa por $A$ e por $O$ Así que a W-xeometría verifica o I postulado euclidiano.

Postulado II

 Consideremos unha circunferencia que pase por O (da que eliminamos precisamente o punto O). Dado nela un arco de circunferencia $AB$ sempre o poderemos ampliar a outro arco maior $A'B'$ en calquera dos dous sentidos.
Traduzamos isto en termos da W-xeometría. Teremos que dado un W-segmento $AB$ poderemos prolongalo a outro $A'B'$. Este é o II postulado da xeometría euclidiana. Se partimos dunha recta que pasa por O, pode suceder que o segmento $AB$ sexa finito, nese caso basta con remitirnos á xeometría euclidiana clásica 
Algúns casos do Postulado II

No caso de que o segmento conteña a $P_{\infty }$, tampouco teremos dificultades tanto para ampliar o segmento $AB$ a $A'B'$ como o segmento $AP_{\infty }$ a outro $AP_{\infty }'$
Postulado II con punto do infitnito

Postulado III

O III postulado di que debemos ser quen de "debuxar unha circunferencia con calquera centro e distancia". Velaquí que debemos explicar como medir distancias nesta peculiar xeometría. Marta Svéd ofrécenos unha analoxía para achegarnos a este tópico.

Supoñamos que, sen usar o compás,  queremos trazar unha circunferencia de centro $C$ e pasando por un punto $P$ na "anticuada" xeometría euclidiana. Poderiamos facelo da seguinte maneira. Consideremos unha recta $r$ pasando por $C$ para obter $P'$, a reflexión de $P$ respecto de $r$. $P'$ será outro punto da circunferencia. Xa que logo, a circunferencia estará formada por todas as reflexións de $P$ respecto de todas as rectas pasando polo centro $C$. Pois ben, a W-reflexión non será outra cousa que a inversión. Unha W-circunferencia poderá obterse invertendo un punto $P$ polas circunferencias que pasan por $O$ e por $C$. 

Unha circunferencia que pase por $O$ e $C$ terá o seu centro na mediatriz $m$ do segmento $OP$. Cada unha delas invertirá un punto $P$ noutro $P'$ e irá xenerando a W-circunferencia de centro $C$. Ao conxunto de todas estas circunferencias coñéceselle como feixe elíptico de circunferencias. Para trazar a W-circunferencia de centro $C$ pasando por $P$ podes mover o punto $X$ ou premer no play.

Se xogas un pouco coa aplicación verás que a W-circunferencia é unha circunferencia euclidiana pero o seu centro $C$ non coincide co centro na xeometría euclidiana. A razón é que as distancias na W-xeometría non coinciden coas euclidianas. A chave para a definición das W-distancias está na fórmula que vimos noutra ocasión que nos indica cal é a lonxitude dun segmento $A'B'$ que resulta da inversión doutro $AB$ por unha circunferencia de raio $R$:  $$A'B'=\frac{R^{2}\cdot AB}{OA\cdot OB}$$

Para simplificar tomaremos $R=1$ e definiremos a W-distancia entre dous puntos $A$ e $B$ como $$ d_{W}\left ( AB \right )=\frac{ AB}{OA\cdot OB}$$

Desta definición é inmediato verificar tanto que esta nova definición de distancia é simétrica como que obteremos sempre números positivos (só será 0 se $A=B$). A desigualdade triangular da W-distancia é unha consecuencia da desigualdade de Ptolomeo

Quedan por comprobar os dous postulados máis polémicos de Euclides. Farémolo nas dúas seguintes entradas ([2] e [3])

luns, 11 de marzo de 2024

Un regalo da xeometría inversiva

Nunca estudei a xeometría inversiva. O máis cerca que estiven diso foi nas clases de Álxebra II, no segundo cuso da carreira, cando traballamos a razón dobre. Aquel achegamento , facendo honra á denominación da materia, foi puramente alxébrico. Nesas clases nunca debuxamos unha circunferencia. Así, cando vexo algúns apuntes sobre ese tema ando sempre ás atoutiñadas, todo me sorprende. 

Nunha entrada anterior xa se explicaba en que consistía a inversión dun plano mediante unha circunferencia. Recórdoo de seguido. Trátase dunha transformación do plano (agás un punto) en si mesmo. Dada unha circunferencia, (que chamaremos circunferencia inversiva) de centro O (centro de inversión) e raio R construiremos a inversión así:


Se $P$ é un punto do círculo de centro $O$ e raio $R=OT$ trazamos a semirecta $OP$ e a súa perpendicular polo punto $P$. Esta perpendicular cortará en dous puntos á circunferencia. A tanxente nun destes puntos cortará a semirecta $OP$ nun punto $P'$ que será a inversión de $P$

No caso de que $P$ fique fóra do círculo a obtención de $P'$ sería semellante. Desde $P$ trazamos unha das tanxentes á circunferencia $PT$. Despois trázase a perpendicular a $OP$ por $T$ e obtemos $P'$

En calquera caso  o inverso dun punto $P$ respecto dunha circunferencia de centro $O$ e raio $R$ é outro punto $P'$ na semirecta $OP$ tal que $OP\cdot OP'=R^{2}$ Son bastante evidentes as seguintes propiedades:

  • O inverso do inverso é o propio punto
  • O inverso dun punto interior á circunferencia fica fóra da mesma e viceversa.
  • Os únicos puntos auto-inversos son os da circunferencia

Na entrada á que facía referencia anteriormente deducíranse algunhas propiedades da inversión usando un método un tanto estrafalario (mediante o uso da proxección estereográfica). Alí establecimos os seguintes resultados:

  • A inversión conserva os ángulos
  • A inversa dunha recta que pasa por O é a propia recta (sempre que omitamos o propio punto O, que é o único que non ten imaxe)
  • A inversión transforma circunferencias que non pasan por O en circunferencias
  • A inversión transforma circunferencias que pasan por O en rectas.

Imos demostrar a última propiedade mediante un procedemento máis estándar. Recóllo do libro "Regreso a la geometría" de H.S.M Coxeter e S.L. Greitzer (La tortuga de Aquiles 1993).

Consideremos unha recta $a$ que non pase por $O$. Tracemos desde $O$ a perpendicular a $a$, $=OA$. Sexa $A'$ a inversa de $A$. Debuxemos a circunferencia $\alpha $ de diámetro $OA$. Desde un punto $P\in a$ trazamos o segmento $OP$ que cortará a $\alpha $ nun punto $P'$. 

Os triángulos $\triangle OP'A'$ e $\triangle OPA$ son semellantes xa que comparte o ángulo en O e ambos teñen ademais un ángulo recto. De aí que tamén $$\frac{OP}{OA}=\frac{OA'}{OP'}\Rightarrow OP\cdot OP'=OA\cdot OA'=R^{2}$$

Entón $P'$ é o inverso de P.  Recíprocamente calquera punto da circunferencia $\alpha$ invértese noutro da recta $a$


A lonxitude dun segmento invertido

Seguindo o libro de Coxeter e Greitzer abordaremos agora un teorema que explica como se modifica a distancia mediante a inversión. 

Fórmula da lonxitude dun segmento invertido. Se unha circunferencia $\omega$ de centro $O$ e raio $R$ inverte os puntos $A$ e $B$ en $A'$ e $B'$, as distancias verifican a seguinte relación $$A'B'=\frac{R^{2}\cdot AB}{OA\cdot OB}$$


Sexa $A'$ inverso de $A$: $OA\cdot OA'=R^{2}$

Sexa $B'$ inverso de $B$: $OB\cdot OB'=R^{2}$

Entón $OA\cdot OA'=OB\cdot OB'$ polo que e  $$\frac{OA}{OB}=\frac{OB'}{OA'}$$

Daquela os triángulos $\triangle OAB$ e $\triangle OA'B'$ son semellantes pois o ángulo en O é común e os lados que o determinan son proporcionais (aplicamos o chamado criterio LAL). Polo tanto temos tamén que $$\frac{A'B'}{AB}=\frac{OA'}{OB}=\frac{OA\cdot OA'}{OA\cdot OB}=\frac{R^{2}}{OA\cdot OB}$$

Despexando, obtemos a igualdade prometida: $$A'B'=\frac{R^{2}\cdot AB}{OA\cdot OB}$$

Un regalo: o teorema de Ptolomeo

Hai moitas demostracións do teorema de Ptolomeo. Algunhas teñen base trigonométrica, outras usan a semellanza de triángulos. No libro que vimos mencionando demóstrase este teorema usando a recta de Simson-Wallace (para este tema ver estas outras entradas neste mesmo blogue [1] e [2]). Resulta que tamén hai unha demostración inversiva, ademais é directa e simple.

Antes de nada lembremos que un cuadrilátero cíclico é aquel que ten os catro vértices nunha mesma circunferencia. Sabendo isto podemos enunciar o

Teorema de Ptolomeo. Se ABCD é un cuadrilátero cíclico, a suma dos produtos dos pares de lados opostos é igual ao produto das diagonais, isto é: $AC\cdot BD=AD\cdot BC+AB\cdot BC$

Sexa $\alpha$ a circunferencia pola que pasan os catro vértices do cuadrilátero. Tomando o vértice $A$ como centro, construímos outra circunferencia $\omega$ que conteña ao cuadrilátero. Agora, como os outros vértices, $B$, $C$ e $D$ están en $\alpha$, unha circunferencia que pasa polo centro de inversión, se os invertemos, as súas imaxes $B'$, $C'$ e $D'$ ficarán todas nunha recta. Velaí que $$B'D'=B'C'+C'D'$$

Fagamos agora uso da fórmula, dada anteriormente,  que nos dá a distancia dun segmento invertido:$$\frac{R^{2}\cdot BD}{AB\cdot AD}=\frac{R^{2}\cdot BC}{AB\cdot AC}+\frac{R^{2}\cdot CD}{AC\cdot AD}$$

Eliminando $R^{2}$ e sacando denominadores facendo uso de que o seu mínimo común múltiplo é $AB\cdot AC\cdot AD$:

$$AB\cdot BD=AD\cdot BC+AB\cdot CD$$

O recíproco do teorema de Ptolomeo tamén se verifica, isto é:

Recíproco do teorema de Ptolomeo. Se ABCD é un cuadrilátero tal que: $AC\cdot BD=AD\cdot BC+AB\cdot BC$, entón ABCD é un cuadrilátero cíclico.
Por outra banda, dados catro puntos calquera, sempre se verificaría a desigualdade, coñecida tamén como desigualdade de Ptolomeo: $$AB\cdot BD\leq AD\cdot BC+AB\cdot CD$$
Ademais a igualdade que nos ofrece o teorema de Ptolomeo caracteriza os cuadriláteros cíclicos.


Como colofón citaremos a seguinte aplicación do teorema de Ptolomeo. Consideremos o pentágono regular de lado unidade. As súas diagonais son evidentemente iguais (son a base de triángulos isósceles de lado 1); poñamos que miden $\varphi$ Desbotando por exemplo o vértice superior quédanos un cuadrilátero cícliclo.

Se lle aplicamos a este cuadrilátero o teorema de Ptolomeo teremos que $$\varphi \cdot \varphi =1\cdot \varphi +1$$

$$\varphi ^{2}=\varphi +1$$

Esta é unha ecuación doada de resolver, ou de recoñecer.

luns, 12 de febreiro de 2024

A inversión proxectada

Paga a pena ler as anotacións da biografía de Jakob Steiner (1796-1863) do portal MacTutor da Universidade de St. Andrews (Escocia) para enterármonos dos avatares da súa vida. Alí cóntase que non aprendeu a ler nin a escribir ata os 14 anos e que os seus pais non querían que estudase. Foi pola súa propia iniciativa que ingresou na escola de Pestalozzi e só despois de estar varios anos gañándose a vida como profesor particular de matemáticas, chegou a ter a atención doutros matemáticos do seu tempo como Jacobi, Abel ou Crelle. De feito xa no primeiro número do famoso Xornal de Crelle aparece un artigo de Steiner no que desenvolve a súa teoría da potencia dun punto respecto dunha circunferencia. En relación con estas ideas o matemático suízo inventa no ano 1830 unha cuasi-transformación do plano (afecta a todo o plano agás a un punto). Estamos a falar da inversión. Presentaremos dous métodos equivalentes de construír unha inversión.

Metodo 1. Dado un punto $P$ no círculo de centro $O$ e raio $R=OT$ trazamos a semirecta $OP$ e a súa perpendicular polo punto $P$. Esta perpendicular cortará en dous puntos á circunfenrencia. A tanxente nun destes puntos cortará a semirecta $OP$ nun punto $P'$ que será a inversión de $P$

No caso de que $P$ fique fóra do círculo a obtención de $P'$ sería semellante. Desde $P$ trazamos unha das tanxentes á circunferencia $PT$. Despois trázase a perpendicular a $OP$ por $T$ e obtemos $P'$

 
Nesta applet pódese comprobar que o segundo método é equivalente ao primeiro.
Método 2. Se $P$ está dentro do círculo de centro $O$ e raio $R=OU$ trazamos a semirecta $OP$ e o diámetro $RS$ ortogonal a $OP$. Desde un destes extremos do diámetro, diagamos $R$, trazamos a semirecta $RP$ que cortará á circunferencia en $V$. Trazamos entón a semirecta $SV$ que cortará a $OP$ no punto buscado $P'$.
Se $P$ está fóra do devandito círculo bastará con trazar $RP$ que corta á circunferencia en $V$. Entón $SV$ cortará a $OP$ en $P'$.
En ambos casos a inversión dun punto da circunferencia é o propio punto $P'=P$

Formulación alxébrica da inversión
Coa finalidade de obter unha caracterización máis alxébrica, repasemos cada un destes métodos.
Os triángulos $OTP$ e $OTP'$ son semellantes, de aí que $$\frac{OP}{OT}=\frac{OT}{OP'}$$ $$OP\cdot OP'=OT^{2}=R^{2}\quad\quad [1]$$

Vexamos como aplicando o outro método obtemos o mesmo resultado






 Os triángulos $UOP$ e $VOP'$ son semellantes, de aí que $$\frac{OP}{OU}=\frac{OV}{OP'}$$ $$OP\cdot OP'=OU\cdot OV=R^{2}\quad\quad [1']$$
Así podemos definir o inverso dun punto $P$ respecto dunha circunferencia de centro $O$ e raio $R$ como outro punto $P'$ na semirecta $OP$ tal que $OP\cdot OP'=R^{2}$
Con esta observación fica claro que o inverso do inverso é o propio punto.

A inversión proxectada
Curiosamente a proxección estereográfica, da que falamos na anterior entrada,  está conectada coa inversión. En concreto, podemos definir a inversión mediante a proxección estereográfica. 
Consideremos o plano $\sigma$ e nel unha circunferencia de centro $S$ e raio $R=2r$, con $r$ o raio da esfera $NP_{\pi}S$ tanxente a $\sigma$ en $S$


Dado un punto $P$ de $\sigma$, mediante a inversa da proxección esteriográfica obtemos na esfera o punto $P_{\pi }$. Sexa entón $P'_{\pi }$ o punto diametralmente oposto a $P_{\pi }$ nesa esfera. A proxección estereográfica deste punto será $\overline{P_{\pi }'}$.
Como $P_{\pi }P'_{\pi }$ é un diámetro o ángulo en $N$ é recto. Velaí que o triángulo $PN\overline{P_{\pi }'}$ é rectángulo. Polo teorema da altura
$$PS\cdot \overline{P'_{\pi }}S=NS^{2}=\left ( 2r \right )^{2}=R^{2}$$
Como se verifica a condición [1] (equivalentemente [1']) dada anteriormente, o punto $\overline{P'_{\pi }}$ sería o inverso de P respecto da circunferencia de centro $S$ e raio $R$ se non fose por un pequeno detalle: que non está na semirecta $SP$. Por esta razón aínda teremos que aplicarlle unha simetría respecto de $S$ a ese punto para obter, por fin, o inverso $P'$.
En resumo, a inversión dun punto $P$ nun plano $\sigma$ respecto dunha circunferencia de centro $S$ e raio $R$ pode obterse mediante a seguinte serie de transformacións:
  • A inversa da proxección estereográfica
  • O punto diametralmente oposto respecto do centro da esfera
  • A proxección estereográfica
  • A simetría respecto do centro na circunferencia
De todo isto conclúese que as propiedades que viramos na anterior entrada sobre a proxección estereográfica esténdense á inversión pois son propiedades que tamén se conservan polas simetrías aplicadas. Isto é:
  • Como a proxección estreográfica leva circunferencias que pasan polo Polo Norte en rectas, a inversión transformará circunferencias que pasan polo centro $S$ da circunferencia de inversión en rectas.
  • Como a proxección esterográfica leva circunferencias que non pasan polo Polo Norte en circunferencias, a inversión transformará circunferencias que non pasan polo centro $S$ da circunferencia de inversión en circunferencias.
  • Como a proxección estereográfica conserva os ángulos, a inversión conservará os ángulos.
Con toda esta bagaxe de certo que a nosa visión do seguinte vídeo será máis profunda, e gozaremos máis del. Que vídeo? Pois un, en concreto o primeiro, dos do marabilloso proxecto Dimensions, no que as imaxes xogan coa proxección estereográfica e a inversión no plano proxectado. Sóavos de algo?

luns, 5 de febreiro de 2024

A proxección estereográfica reencontrada

É curioso como hai certas cousas que se nos quedan retidas na memoria mentres que moitas outras, quizais similares, quizais nalgún sentido máis importantes,  as esquecemos. Cando cursaba 1º de carreira, na materia de Topoloxía I, Xosé Masa puxéranos como exemplo de homeomorfismo (aplicación bixectiva, continua e de inversa continua) unha aplicación, \(\pi\), que identificaba a esfera \(S^{2}=\left \{ (X,Y,Z)/X^{2}+Y^{2}+Z^{2}=r^{2}\right \}\) (sen o punto correspondente ao Polo Norte) co plano \(\mathbb{R}^{2}\) (sen a orixe): $$\pi \left ( X,Y,Z \right )=\left ( \frac{2rX}{r-Z},\frac{2rY}{r-Z} \right )\quad\quad [1]$$

Esta aplicación é coñecida co nome de proxección esterográfica. Constrúese proxectando desde o Polo Norte $N(0,0,r)$  calquera punto da esfera $(X,Y,Z)$ sobre o plano $z=-r$, tanxente á esfera no Polo Sur $S(0,0,-r)$. 

Aínda que pasaron case catro décadas, lembro moi claramente un par de cousas. Unha delas foi que me chamara moito a atención a expresión [1] da función $\pi$, de onde saía?; daquela pensei que nunca chegaría a saber como xustificar esa expresión. Unha segunda cousa que retiven todo este tempo na memeoria foi que Masa déranos a entender que esa función era moi importante. Por iso eu agardaba volver a encontrala máis adiante. Con todo, nese curso non había de ser. Tampouco no resto da carreira, nin despois. Ata hoxe.

Proxección do ecuador

Podemos xogar un pouco coa proxección estereográfica para entendela mellor. É moi sinxelo visualizar que a proxección do ecuador vai ser unha circunferencia. Ademais como o ángulo que forma o eixo terrestre $NS$ coa recta $NP$ é de 45º, se a esfera ten raio $r$ a circunferencia proxectada terá raio $R=2r$. Os paralelos tamén darán lugar a circunfencias. Os paralelos do hemisferio norte proxectaranse en circunferencias de raio maior a $R$ e os do hemisferio sur farano en circunferencias dun raio menor que $R$.
Proxección dun meridiano

Tampouco é dificil visualizar que os meridanos van proxectarse en rectas que pasen polo Polo Sur. Ata aquí os meus coñecementos sobre a cuestión naquela altura. Por algunha razón nestes días volvín sobre to tema. Atopei un deses manuais das "Leccións populares" da editorial MIR,en concreto, o titulado La proyección estereográfica, de G-A. Rosenfeld e N. D. Sergeeva. A maior parte do que vén de seguido foi recollido deste texto.

Para profundizar un pouco máis en todo o relativo á proxección estereográfica, poñamos en práctica algúns coñecementos do currículo de 2º de Bacharelato. Fagamos uso das coordenadas dos puntos amosados nas imaxes: $N(0,0,r)$, $S(0,0,-r)$, $P(X,Y,Z)$ e $P'(x,y,-r)$ e procuremos relacionar as coordendas destes dous últimos puntos. Con ese fin, consideremos os vectores $\overrightarrow{NP}=\left (  X,Y,Z-r\right )$ e $\overrightarrow{NP'}=\left (  x,y,-2r\right )$ que marcan a mesma dirección, de aí que o cociente das súas compoñentes terá que ser unha constante $k$:
$\frac{X}{x}=\frac{Y}{y}=\frac{Z-r}{-2r}=k$, ou equivalentemente 
$$\left.\begin{matrix}X=kx\\ Y=ky\\ Z=r\left ( 1-2k \right )\end{matrix}\right\}\quad \quad [2]$$
Da última das ecuación obtemos que $k=\frac{r-Z}{2R}$. Substituíndo nas dúas primeiras obtense o valor das coordenadas do punto proxectado:
$$x=\frac{X}{k}=\frac{2rX}{r-Z}\quad\quad e \quad\quad y=\frac{Y}{k}=\frac{2rY}{r-Z}$$
Isto é, deducimos a expresión analítica da proxección estereográfica $\pi$ dada en $[1]$. Fagamos o mesmo para obter a inversa $\pi ^{-1}$.
Sexa $P(X,Y,Z)$ un punto da esfera. Verificará a igualdade $X^{2}+Y^{2}+Z^{2}=r^{2}$. Substituíndo nesta expresión os valores obtidos en [2]:
$$k^{2}x^{2}+k^{2}y^{2}+r^{2}\left ( 1-2k \right )^{2}=r^{2}$$ $$k^{2}\left ( x^{2}+y^{2} \right )+r^{2}\left ( 1-4k+4k^{2} \right )=r^{2}$$ $$k^{2} \left ( x^{2} +y^{2}+4r^{2}\right )-4kr^{2}=0$$
Se $k=0$ vemos en $[2]$ que obtemos o punto $N(0,0,r)$. Desbotando este caso podemos simplificar esta última igualdade por $k$:
$$k \left ( x^{2} +y^{2}+4r^{2}\right )-4r^{2}=0$$ $$k=\frac{4r^{2}}{x^{2}+y^{2}+4r^{2}}$$
Finalmente presentamos a prometida expresión analítica da inversa que deducimos empregando outra vez as relacións dadas en [2].
$$X=\frac{4r^{2}x}{x^{2}+y^{2}+4r^{2}}\quad,\quad Y=\frac{4r^{2}x}{x^{2}+y^{2}+4r^{2}}\quad,\quad Z=\frac{x^{2}+y^{2}-4r^{2}}{x^{2}+y^{2}+4r^{2}}\quad\quad [3]$$
$$\pi ^{-1}(x,y)=\left ( \frac{4r^{2}x}{x^{2}+y^{2}+4r^{2}},\frac{4r^{2}y}{x^{2}+y^{2}+4r^{2}},\frac{x^{2}+y^{2}-4r^{2}}{x^{2}+y^{2}+4r^{2}} \right )$$
Co obxecto de simplificar os cálculos, a partir de agora tomaremos como valor do raio da esfera $r=1$. Así, por exemplo a anterior expresión [3] reduciríase a :
$$X=\frac{4x}{x^{2}+y^{2}+4}\quad,\quad Y=\frac{4x}{x^{2}+y^{2}+4}\quad,\quad Z=\frac{x^{2}+y^{2}-4}{x^{2}+y^{2}+4}\quad\quad [3']$$

Propiedades da proxección estéreográfica
Comezaremos lembrando como é a ecuación dunha circunferencia no plano. Se $(x_{0},y_{0})$ é o centro da circunferencia e o raio é $R$, aplicando o teorema de Pitágoras:
$$\left ( x-x_{0} \right )^{2}+\left ( y-y_{0} \right)^{2}=R^{2}$$ $$x^{2}-2x_{0}x+x_{0}^{2}+y^{2}-2y_{0}y+y_{0}^{2}=R^{2}$$ 
$$ x^{2}+y^{2}-2x_{0}x-2y_{0}y+x_{0}^{2}+y_{0}^{2}-R^{2}=0$$
Tomando $a=-2x_{0}$, $b=-2y_{0}$ e $c=x_{0}^{2}+y_{0}^{2}-R^{2}=0$ a expresión fica en
$$x^{2}+y^{2}+ax+by+c=0 \quad\quad  [4]$$

Propiedade 1. A proxección estereográfica leva circunferencias en circunferencias; se a circunferencia da esfera pasa polo Polo Norte, a súa proxección será unha recta.
Unha circunferencia na esfera é a intersección da esfera cun plano $\alpha :AX+BY+CZ+D=0$. Substituíndo os valores de $X$, $Y$ e $Z$ obtidos en [3'], sacando despois denominadores e reorganizando os termos teremos:
$$A\frac{4x}{x^{2}+y^{2}+4}+B\frac{4y}{x^{2}+y^{2}+4}+C\frac{x^{2}+y^{2}-4}{x^{2}+y^{2}+4}+D=0$$ $$4Ax+4By+\left ( x^{2}+y^{2}-4 \right )C+\left ( x^{2}+y^{2}+4 \right )D=0$$ $$\left ( C+D \right )\left ( x^{2}+y^{2}\right )+4Ax+4By+4(D-C)=0$$

Que o Polo Norte $P(0,0,1)$ forme parte da circunferencia que se proxecta significa que $P$ é un punto do plano $\alpha$. Substituíndo as súas coordenadas na ecuación do plano obtemos que $C+D=0$. Tal e como queriamos demostrar, neste caso a última ecuación reduciríase a unha recta:
$$4Ax+4By+4(D-C)=0$$
Consideremos agora que $P\notin \alpha $, ou equivalentemente, que $C+D\neq 0$. Dividindo por $C+D$ quedaría da forma:
$$x^{2}+y^{2}+\frac{4A}{C+D}x+\frac{4B}{C+D}y+\frac{4\left ( D-C \right )}{D+C}=0$$
Comparando con [4] vemos que é a forma xeral dunha circunferencia $\square $.

Propiedade 2. A proxección estereográfica é unha aplicación conforme, isto é, conserva os ángulos.
A partir da seguinte figura imos obter as bases da demostración desta segunda propiedade.
Figura 1


Consideremos unha curva $\gamma$ pasando por un punto $P$ da esfera $S^{2}$. Sexa $T_{N}$ o plano tanxente ao Polo Norte $N$ e $T_{P}$ o plano tanxente ao punto $P$. Estes planos córtansena recta $r$. Como son planos tanxentes á esfera determinan un triángulo isóscele con ángulos iguais $\beta _{1}=\beta _{2}$.
Tracemos, desde o Polo Norte a proxección do punto $P$ sobre o plano $T_{S}$ tanxente ao Polo Sur $S$. Obtemos así $\pi(P)=P'$. En $P$ determínanse ángulos  da mesma medida, $\beta _{2}=\beta _{3}$, por seren opostos polo vértice. Finalmente tamén $\beta _{1}=\beta _{4}$ pois son correspondentes. En consecuencia o triángulo $PQP'$ é isóscele, de aí que os lados etiquetados con $b$ midan o mesmo (ver figura 1)
Figura 2
Sexa $t$ a recta tanxente a $\gamma$ en $P$, $t$ estará en $T_{P}$. Se aplicamos a proxección estereográfica $\pi$ a $\gamma$ obteremos unha curva $\pi(\gamma)=\gamma'$ no plano $T_{S}$ que terá como tanxente en $P'$ a recta $\pi(t)=t'$, unha recta no plano $T_{S}$. Os segmentos $PQ=P'Q=b$ son ortogonais a $QL$. Fórmanse así dous triángulos rectángulos congruentes $PQL$ e $P'QL$. En consecuencia os ángulos $\theta $ que forman as rectas $t$ e $t'$ cos segmentos $PQ$ e $P'Q$ son iguais.
Como corolario disto ultimo, se por $P$ pasase outra curva $\lambda$, a súa tanxente en $P$ formaría con $PQ$ o mesmo ángulo que a tanxente en $P'$ a $\pi(\lambda)=\lambda'$ con $P'Q$, de aí que o ángulo determinado por dúas curvas $\gamma$ e $\lambda$ se conservaría mediante a proxección.de por que regresar á proxección estereográfica

Con toda esta bagaxe de certo que a nosa visión do seguinte vídeo será máis profunda, e gozaremos máis del. Que vídeo? Pois un, en concreto o último,  dos do marabilloso proxecto Dimensions, no que se demostra como a proxección estéreográfica leva as circunferencias da esfera que non pasan polo Polo Norte en circunferencias. Sóavos de algo?

luns, 13 de novembro de 2023

As entradas do cine e outras cuestións difíciles

Presentamos un problema de apariencia anódina. Así como é facil de comprender o enunciado, a súa resolución non é nada simple. Agora ben, que non sexa simple non significa que non sexa marabillosa, que o é.

As entradas do cine. n+m persoas están nunha cola do despacho do cine; m teñen un billete de 5 € e as outras n só teñen billetes de 10 €. Cada entrada custa 5 €. Na billeteira non teñen ningún tipo de cambio. Se cada cliente compra só unha entrada, cal é a probabilidade de que ningún cliente teña que agardar polo cambio?


Para responder cómpre que teñamos presente a regra da probabilidade de Laplace que nos di que no caso de termos un experimento aleatorio no que todos os sucesos elementais teñen a mesma probabilidade, a probabilidade dun suceso A virá dada polo cociente entre o número de casos favorables a A e o de casos posibles:

$$P(A)=\frac{número\quad de\quad casos \quad favorables\quad a \quad A }{número\quad de\quad casos\quad posibles}$$

O noso propósito é determinar os dous elementos deste cociente. Para facelo colleremos un camiño encantador que recollo do mesmo lugar do que recollín o enunciado do problema, o libro dos irmáns Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. I: Combinational Analysis and Probability Theory

Podemos pensar o problema mediante unha rede de dimensións $m\times n$ colocada sobre un sistema de coordenadas cartesiano. Se lle imos preguntando a cada un dos clientes que tipo de billetes ten, por orde e comezando desde o primeiro da cola, podemos ir elaborando un camiño sobre esta rede cartesiana, partindo do $(0,0)$ e trazando un segmento horizontal dunha unidade por cada persoa que teña 5 € e un segmento unitario vertical por cada unha que teña 10 €. Ao final teremos un segmento poligonal que unirá o $(0,0)$ co punto $(m,n)$. 

figura 1

Recomendo consultar a entrada anterior porque utilizaremos técnicas semellantes ás traballadas alí. En particular, nela víramos que o número total de camiños entre os puntos $(0,0)$ e$(m,n)$ era $\binom{m+n}{n}$, o que nos dá o número de colas posibles. Máis dificultoso será determinar os casos favorables. 

Se trazamos a recta $r$ de ecuación $y=x$, está claro que os camiños favorables serán aqueles, como o trazado na figura 1, que van por debaixo desa recta; son os que representan os casos nos que os clientes non teñen que agardar polo cambio.

Designemos $A_{0},A_{1},A_{2},...,A_{n+m}$ aos vértices consecutivos dun destes camiños, onde $A_{0}=(0,0)$ é sempre o punto inicial e $A_{n+m}=(m.n)$ o final. Que pasa se $m<n$? A figura 2 explícao claramente.

figura 2

Efectivamente, se $m<n$, como no rectángulo da dereita, será imposible alcanzar o punto final mediante un camiño que transcorra por debaixo de $r$. Nese caso a probabilidade será nula. Pasemos a considerar o outro caso, no que $m>n$.

Agora, no canto de facer o reconto dos camiños favorables, contabilizaremos os desfavorables. Para iso vainos ser de axuda a recta $r':y=x+1$. Calquera camiño desfavorable debe ter un punto sobre esa recta. Sexa $A_{k}$ o primeiro punto dun deses camiños. Centrémonos agora no primeiro tramo do camiño, o que vai desde a orixe ata $A_{k}$, isto é, o tramo $A_{0},A_{1},...,A_{k-1},A_{k}$ e construamos o seu simétrico respecto de $r'$. Será $A'_{0},A'_{1},...,A'_{k-1},A_{k}$, onde $A'_{0}=(-1,1)$.

figura 3

Mediante esta construción, para cada camiño desfavorable $A_{0},A_{1},...,A_{k-1},A_{k},...A_{n+m}$ podemos construir un novo camiño $A'_{0},A'_{1},...,A'_{k-1},A_{k},...A_{n+m}$ que comeza en $A'_{0}=(-1,1)$. De aí que contabilizar todos os camiños desfavorables equivale a contabilizar todos os que teñen a súa orixe en $A'_{0}$. Estes terán $m+1$ segmentos horizontais e $n-1$ segmentos verticais que son $\binom{m+n}{n-1}$. Polo tanto o número de casos favorables obterase mediante a resta

$$\binom{m+n}{n}-\binom{m+n}{n-1}=\frac{\left ( m+n \right )!}{n!\cdot m!}-\frac{\left ( m+n \right )!}{\left ( n-1 \right )!\cdot \left ( m+1 \right )!}=\\=\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}$$

Para obter a probabilidade pedida no problema teremos que dividir este valor polo número de casos posibles:

$$\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}:\binom{m+n}{n}=\frac{\left ( m+n\right )!\left ( m+1-n \right )}{n!\cdot \left ( m+1 \right )!}:\frac{\left ( m+n \right )!}{m!\cdot n!}=$$ $$=\frac{\left ( m+n\right )!\left ( m+1-n \right )m!\cdot n!}{n!\cdot \left ( m+1 \right )!\left ( m+n \right )!}=\frac{m+n-1}{m+1}$$

Pode que haxa  obras de arte que nos ofrezan tanta beleza como a que se transmite nestas liñas, pero non serán moitas.

Máis alá.

No mencionado libro dos xemelgos Yalgom van maís alá. Dan unha demostración deste mesmo resultado por indución e outra usando os mesmos camiños que os trazados na que se presentou aquí, pero imaxinando agora que son esqueiras e que incide sobre elas a luz do sol cunha inclinación de 45º. 

Ademais os Yaglom propoñen outras variantes deste mesmo problema. Nunha delas piden que supoñamos que no despacho do cine teñen p billetes de 5€. Noutra piden que resolvamos un problema semellante ao ofrecido aquí pero partindo do suposto de que houbese billetes de 3 €:

As entradas do cine con billetes de 3 €. n+m persoas están nunha cola do despacho do cine; m teñen un billete de 1 € e as outras n só teñen billetes de 3 €. Cada entrada custa 1 €. Na billeteira non teñen ningún tipo de cambio. Se cada cliente compra só unha entrada, cal é a probabilidade de que ningún cliente teña que agardar a que na billeteira teñan cambio?

E aínda máis. Explícase como a solución do problema pode aplicarse para resolver este outro, ben complexo:
Cordas sen interseción. Márcanse 2n puntos sobre unha circunferencia. De cantas formas poden unirse en n pares de tal xeito que as cordas de formadas  non se intersequen entre si?
A partir disto Yaglom e Yaglom explican como se pode obter a solución á seguinte e difícil cuestión, discutida por Euler no 1751 nunha carta a Golbach:
Triangulacións. De cantas formas se pode triangular un n-ágono convexo?

luns, 16 de outubro de 2023

Desafíos xeométricos para secundaria

Seguro que se outra persoa tivera a encomenda de escoller ducia e media de cuestións xeométricas do libro de David Linker e Alan Sultan Mathematics Problem-Solving Challenges for Secondary School Students and Beyond (Wordl Scientific 2016) faría outra escolla distinta. Incluso eu mesmo, noutro momento, tamén me decantaría por outra elección. 

Na anterior entrada fixera unha recompilación de problemas aritméticos e alxébricos así que podemos considerar esta entrada como unha continuación.

1. Determina o raio dunha esfera tal que o seu volume coincida numericamente coa súa superficie

2. A lonxitude da tanxente a unha ciercunferencia desde un punto exterior P é 7. Se o raio da circunferencia é 3, calcula a mínima distancia de P á circunferencia.


3. Fórmase un octógono regular cortando triángulos rectángulos isósceles nas esquinas dun cadrado de lado 4. Determina a lonxitude de cada un dos lados do octógono.

4. Sexan os puntos $A(21,0)$, $B(0,20)$ e $P(a,b)$. Se $\angle APB$ é un ángulo recto, determina o mínimo valor que pode ter $a$.

5. Dúas cordas nunha circunferencia son perpendiculares. Unha ten segmentos de 4 e 3 unidades e a outra de 2 e 6. Acha o raio da circunferencia.

6. Nunha circunferencia de raio 10 trazamos dúas cordas paralelas a lados opostos do centro e que distan deste 5 unidades. Acha a área da rexión deliminada pola circunferencia e as paralelas.


7. Acha a área do hexágono ABCDEF que se formou unindo os puntos medios de lados adxacentes dun cubo unidade tal e como se amosa na imaxe

8. Dous triángulos congruentes de ángulos 30-60-90 con hipotenusa 6 son colocados de forma que as súas hipotenusas coincidan e se superpoñan nunha rexión de área non nula pero que non coincide con ningún dos dous triángulos. Determina a área de superposición.


9. Desde un punto $P$ exterior á circunferencia de centro $O$, trázanse as tanxentes de $P$ á circunferencia aos puntos $X$ e $Y$. Se $PO=PX+PY$. Determina o ángulo $\angle XPY$.

10. Determina o raio da circunferencia centrada no (0,0) e que é tanxente á recta $x+2y=10$

11. Nun triángulo $triangle ABC$, $AB=AC$, o punto $D$ está en $AC$ e $AD=DB=BC$. Determina o ángulo $\angle A$

12. Dados dous círculos concéntricos e unha corda do maior que é tanxente ao menor, sabendo que a corda mide 12 unidades, determina a área da coroa circular.

13. Nun triángulo $triangle ABC$, $AB=AC$. Hai puntos $D$ en $AB$, $E$ en $CA$ e $F$ en $AD$ tales que $CB=CD=ED=EF=FA$. Determina ángulo $\angle A$.


14. Nun triángulo $\triangle ABC$ $AB=AC=17$. O punto $E$ triseca o segmento $BC$ e $AE=15$. Calcula $BC$

15. Nun sistema de coordenadas cartesiano hai dúas circunferencias pasando polo punto (3,2) que son tanxentes a ambos eixos de coordenadas. Determina a suma dos raios desas circunferencias.

16. A suma das lonxitudes das diagonais dun rombo é de 14 unidades e a súa área é de 13 unidades cadradas. Determina a lonxitude do lado do rombo.

17. Inscríbese un hexágono ABCDEF dentro dunha circunferencia con $AB=CD=EF=2$ e $BC=DE=FA=10$. Calcula a área dun triángulo equilátero inscrito na circunferencia.


18. Dobramos un papel rectangular de $10\times 24$ de forma que coincidan os vértices opostos $A$ e $C$. Calcula a lonxitude da dobrez.

xoves, 23 de marzo de 2023

Notas sobre ternas pitagóricas

Se os lados dun triángulo rectángulo teñen valores naturais dise que eses valores forman unha terna pitagórica. Por exemplo $(3,4,5)$ e $(8,15,17)$ son ternas pitagóricas. Podémolo comprobar: $3^{2}+4^{2}=5^{2}$ e $8^{2}+15^{2}=17^{2}$.

Dada unha terna pitagórica como $(3,4,5)$ é moi fácil obter infinidade delas multiplicando por un enteiro calquera. Por exemplo, $(3n,4n,5n)$ tamén será unha terna pitagórica xa que 

$$\left (3n  \right )^{2}+\left (4n  \right )^{2}=n^{2}\left ( 3^{2}+4^{2} \right )=n^{2}5^{2}=\left ( 5n \right )^{2}$$

Ás ternas como $(3,4,5)$, na que os números son coprimos, chámaselle ternas pitagóricas primitivas. Agora ben, a pouco que indagemos veremos que hai moitas máis. Como obtelas? Segundo Proclo (412-485) foi o propio Pitágoras o primeiro en determinar un método para xeneralas. Os fundamentos parten de estudar os números figurados, en concreto os cadrados. Se temos un cadrado de puntos, como o da figura, e lle engadimos o que lle chamaban gnomon, esa especie de L en cor vermella, obtemos o seguinte cadrado.

Chamámoslle $m$ á cantidade de puntos do gnomon. O seu valor será sempre un número impar. Está claro que o gnomon rodea un cadrado de lado $\frac{m-1}{2}$. Co engadido do gnomon fórmase un cadrado maior de lado $\frac{m-1}{2}+1=\frac{m+1}{2}$. Se o propio gnomon fose un cadrado, $m=n^{2}$, teriamos unha terna pitagórica 
$$\left ( n,\frac{m-1}{2},\frac{m+1}{2} \right )=\left ( n,\frac{n^{2}-1}{2},\frac{n^{2}+1}{2} \right )$$
Para cada $n$ impar poderemos obter así unha terna pitagórica. Por exemplo, para $n=3$ temos a terna $(3,4,5)$. Pero hai moitas que non teñen esta forma, como é o caso de $(8,15,17)$. Proclo seguiu dando información sobre esta cuestión, tamén asegurou que Platón achara outro método que daba ternas, partindo agora de números pares. 
Observemos a seguinte imaxe, catro tiras de lonxitude $m$ están rodeando un cadrado de lado $m-1$ e completan así outro cadrado de lado $m+1$

Temos pois que $\left ( m-1 \right )^{2}+4m=\left ( m+1 \right )^{2}$. Se $4m$ fose un cadrado, $4m=n^{2}$, a tripleta $(n,m-1,m+1)$ verificaría o teorema de Pitágoras. Como $m=\left ( \frac{n}{2} \right )^{2}$, para cada valor par de $n$ podemos formar a seguinte terna pitagórica
$$\left (n,\left (\frac{n}{2} \right )^{2}-1,\left ( \frac{n}{2}\right )^{2} +1  \right )$$

A escura aportación de Euclides
Aínda así, non abarcamos todos os casos posibles, $(39,80,89)$ non se adapta nin á fómula de Pitágoras nin á de Platón. Como en moitas outras ocasións, temos que acudir a Euclides para que salve a situación. A parte negativa é que Euclides ofrece a súa achega no libro X dos Elementos, o máis escuro e intrincado de todos o que conforman esta obra.

No Lema I, posterior á Proposición X.28 dos Elementos, podemos ler, non sen certa dificultade, que Euclides explica como obter ternas pitagóricas

Lema I. Atopar dous números cadrados de xeito que tamén a súa suma sexa cadrado

Este é un deses resultados dos Elementos nos que non se dá unha demostración, senón que se realiza unha construción. Recollemos aquí dunha adaptación da tradución de Ana Gloria Rodríguez e Celso Rodríguez


Tómense dous números cadrados $AB=u^{2}$ e $B\Gamma=v^{2}$, consideremos a súa resta $A\Gamma=u^{2}-v^{2}$. Divídase á metade por $\Delta$ ($A\Delta=\Delta\Gamma$) $A\Delta = \Delta \Gamma =\frac{u^{2}-v^{2}}{2}$ logo o produto de $AB=u^{2}$ e $B\Gamma=v^{2}$ xunto co cadrado de $A\Gamma$ ($A\Gamma^{2}=\left ( \frac{u^{2}-v^{2}}{2} \right )^{2}$) é igual ao cadrado de $B\Delta$ ($ B\Delta^{2}=\left ( \frac{u^{2}+v^{2}}{2} \right )^{2}$) co cal 

$$\left ( uv \right )^{2}+\left ( \frac{u^{2}-v^{2}}{2}\right )^{2}=\left ( \frac{u^{2}+v^{2}}{2} \right )^{2}$$

Acabamos de comprobar que $\left ( uv  , \frac{u^{2}-v^{2}}{2} , \frac{u^{2}+v^{2}}{2}   \right )$ é unha terna pitagórica.

A expresión estándar dunha terna pitagórica

Tomando $m=\frac{u}{\sqrt{2}}$  e  $n=\frac{v}{\sqrt{2}}$ temos esta outra forma de presentar as ternas pitagóricas, que é a habitual hoxe en día:

$$\left ( 2mn, m^{2} -n^{2},m^{2}+n^{2}\right )$$

A cuestión é: con esta fórmula temos determinadas todas as ternas pitagóricas primitivas? A resposta é afirmativa. Vexámolo. 

Se $(a,b,c)$ é unha terna pitagórica primitiva, $a$ e $b$ $c$ son coprimos polo que non poden ser pares. Tampouco poden ser impares xa que nese caso, os seus cadrados tamén o serían e polo tanto $c$ debería ser par, entón $a=2p+1$, $b=2q+1$ e $c=2r$. 

$$\left ( 2p+1 \right )^{2}+\left ( 2q+1 \right )^{2}=r^{2}$$

$$4\left (p ^{2} +q^{2}p+q\right )+2=4r^{2}$$

Pero non é posible que ao dividir o primeiro membro por 4 obteñamos de resto 2 mentres que ao dividir o segundo membro por 4 o resto sexa 0. A conclusión é que un dos números entre a $a$ e $b$ debe ser par e o outro impar. Supoñamos, sen perda de xeneralidade que  $a$ é o par, entón $b$ e $c$ serán impares.

Como $a^{2}=c^{2}-b^{2}=\left ( c-b \right )\left ( c+b \right )$, tomando $u=\frac{c+b}{2}$ e $v=\frac{c-b}{2}$ , sabemos que $u$ e $v$ serán coprimos, por selo tamén $b$ e $c$. Teremos $\left ( \frac{a}{2} \right )^{2}=uv$. Se un produto de coprimos é un cadrado, cada un dos factores debe ser tamén un cadrado. De aí que $u=m^{2}$ e $v=n^{2}$.

Como $a^{2}=4uv=\left ( 2mn \right )^{2}$, tense que $a=2mn$.

$\left\{\begin{matrix}c+b=2u=2m^{2}\\  c-b=2v=2n^{2}\end{matrix}\right.$ Sumando e restando obtemos $c=m^{2}+n^{2}$ e $b=m^{2}-n^{2}$. Entón a terna pitagórica primitiva de partida poida escribirse:

$$\left ( a,b,c \right )=\left ( 2mn,m^{2}-n^{2},m^{2}+n^{2} \right )$$

Xeometría analítica para as ternas pitagóricas

Neste punto a cuestión estaría completada. Con todo, imos engadir un epílogo, extraído do libro Matemática elemental desde un punto de vista superior (Nivola, 2006), de Felix Klein. 

Volvamos a partir dun triángulo rectángulo primitivo $(a,b,c)$. Dividindo todos os lados por $c$ transformarémolo nun triángulo rectángulo de hipotenusa $1$, quedando a terna da forma $\left ( \frac{a}{c} ,\frac{b}{c},1\right )=(x,y,1)$. Agora os catetos deben ser números racionais. Pensemos que se verificará $x^{2}+y^{2}=1$, isto é, os triángulos fican sobre a circunfencia unidade. Identificaremos todos os triángulos rectángulos unitarios con catetos racionais. Para iso faremos uso da semirecta que pasa polo punto $S(0,-1)$. Se a súa pendente é $\lambda $ terá de ecuación

$$y=\lambda \left ( x+1 \right )$$

Denominaremos racional ou irracional a esta semirecta segundo $\lambda$ sexa ou non racional. Diremos que un punto é racional se ten as dúas coordenadas racionais. Con esta terminoloxía verifícase o seguinte 
Teorema. a)Todo punto racional da circunferencia proxéctase desde S mediante unha semirecta racional. b) Recíprocamente toda semirecta racional cortará á circunferencia unitaria nun punto racional.
O apartado a) é evidente xa que a recta que pasa por S eP, ambos racionais, terá pendente racional. Pasemos a demostrar o apartado b). Con este fin procuraremos caracterizar os puntos de intersección da semirecta e a circunferencia substituíndo a ecuación da primeira, $y=\lambda \left ( x+1 \right )$, na segunda, $x^{2}+y^{2}=1$:
$$x^2+\lambda ^{2}\left ( x+1 \right )^{2}=1$$
Operando chegamos a
$$\left (\lambda ^{2} +1 \right )x^{2}+2\lambda ^{2}x+\lambda ^{2}-1=0$$
Coñecemos unha solución desta ecuación, $x=-1$, pois sabemos que o punto $S$ forma parte tanto da semirrecta como da circunferencia. Dividindo a anterior expresión por $x+1$


$$\left (\lambda ^{2} +1\right )x+\lambda ^{2}-1=0$$
$$x=\frac{1-\lambda ^{2}}{1+\lambda ^{2}}$$
Subsituíndo na ecuación da recta obtemos o valor correspondente da ordenada
$$y=\frac{2\lambda }{1+\lambda ^{2}}$$
Destas dúas últimas expresións dedúcese que se $\lambda$ é racional tamén o será o punto de corte.
O teorema xa está demostrado. Fagamos agora unha reflexión a maiores. Tomemos  $\lambda =\frac{n}{m}$. Velaí que substituíndo nas anteriores expresións teremos que:
$$x=\frac{m^{2}-n^{2}}{m^{2}+n^{2}}\quad\quad y=\frac{2mn }{m^{2}+n^{2}}$$
Así identificamos todas as ternas pitagóricas de hipotenusa $1$:
$$\left (\frac{m^{2}-n^{2}}{m^{2}+n^{2}},\quad \frac{2mn }{m^{2}+n^{2}}\quad,1  \right )$$