luns, 18 de novembro de 2024

Problemas chegados desde Moscú. 3

Esta é a terceira e última entrada adicada a recoller problemas de Boris Kordemsky. As anteriores pódense consultar aquí e aquí.

Imos cun problema moi simple. Con todo moita xente dirá que lle faltan datos.

Un barco diésel e un hidroavión. Un barco diésel parte de viaxe. Cando está a 180 millas da costa envíase un hidroavión co correo que ten unha velocidade dez veces superior á do barco. A que distancia alcanza o barco?

O encantador do seguinte problema é que a pregunta é inesperada

En coche e a cabalo. Un mozo e un home maior saen da vila cara a cidade; un vai a cabalo e outro en coche. Pronto queda claro que se o home maior chegase tres veces máis lonxe de onde está, quedaríalle a metade para viaxar do que lle queda. E se o mozo viaxara a metade do que xa fixo, quedaríanlle tres veces máis para viaxar do que lle queda. Quen vai a cabalo?

Sei que non hai que recorrer á combinatoria para resolver a seguinte cuestión. Con todo, desde que o coñecín coloqueino entre os problemas a resolver cando trato na clase as técnicas de reconto combinatorio.

Novas estacións. Cada estación vende billetes a todas as outras estacións do percorrido. Cando se engaden algunhas estacións hai que imprimir 46 billetes adicionais. Cantas estacións se engadiron? Cantas había antes?

Teño preferencia polos problemas de matemáticas sen referencias externas. Matemáticas para estudar as propias matemáticas. Dentro deste ámbito está o estudo do propio sistema de numeración. Quizais o pouco traballo/reflexión sobre o sistema decimal, quizais a propia abstracción deste tipo de cuestións, o certo é que normalmente vólvenselle moi dificultosas ao alumnado.

Un número de cinco díxitos. Dime un número de cinco díxitos tal que se lle engades un 1 despois do mesmo é tres veces maior que se llo engades antes.

Cando un se enfronta ao seguinte enunciado cómprelle unha gran dose de imaxinación. Temos un avión, unha motocicleta e un cabalo andando dun lado para outro. O curioso é que non nos dan ningunha velocidade.

O motociclista e o xinete. Envían un motociclista desde a oficina de correos a tempo para a chegada dun avión ao aeroporto. O avión chega antes de tempo e o correo é transportado á oficina de correos a cabalo. Despois de media hora o xinete crúzase co motociclista e dálle o correo. A motocicleta volve á oficina de correos 20 minutos antes do esperado. Cantos minutos antes aterrizou o avión?

O tradutor do libro ao inglés, Albert Perry, especialista en ruso da Colgate University, fixo unha curiosa anotación ao seguinte problema:" Non hai árbores de nadal na URRS, oficialmente só os hai de aninovo". En canto ao contido, é un clásico.

Regalos de aninovo. O noso comité executivo do sindicato xestionou unha árbore de aninovo para os nenos. Despois de distribuir caramelos e galletas en paquetes de regalo, comezamos coas laranxas. Pero decatámonos de que se poñemos 10 laranxas por paquete, un paquete só terá 9, se colocamos 9, un paquete só derá 8; se poñemos 8, 7; e así sucesivamente ata dúas laranxas por paquete cun paquete con só 1. Cantas laranxas temos? 

Para entender os comentarios ao seguinte problema cómpre ler antes o enunciado.

Unha suma palindrómica. Este problema aínda non foi resolto. Suma a un enteiro o propio número invertido. Engade á suma o invertido da suma. Continúa ata que a suma sexa un palíndromo (que se le igual de esquerda a dereita que de dereita a esquerda) $$\begin{matrix} 38 & & 139 & & 48017 & & \\ \underline{83} & & \underline{931} & &\underline{71084} & & \\ 121& &1170 & &119101 & & \\ & &\underline{0711} & & \underline{101911 }& & \\ & & 1881 & & 221012 & & \\ & & & & \underline{210122} & & \\ & & & & 431134 & & \\ \end{matrix} $$

Pode que sexan necesarios moitos pasos. (de 89 a 8.813.200.023.188 precísanse 24 pasos). Unha hipótese é que calquera enteiro produce, antes ou despois, un palíndromo. Segundo Kordemsky, un traballador industrial de Riga chamado P. R. Mols, decatouse de que o número 196, despois de setenta e cinco pasos, non produce un palíndromo. Kordemsky pídenos que no canto de continuar a partir do número de 36 díxitos da septuaxésima quinta suma, intentemos refutar ou demostrar a conxectura mediante un razoamento.

Martin Gardner comenta que xa se realizaran daquela miles de sumas a partir do 196 e que non se achara ningún palíndromo. Tamén informa que a conxectura foi demostrada falsa para os números binarios. Sospéitase que hai números que non darán lugar a un palíndromo. A eses números chámaselles números de Lychrel. En concreto 196 é un candidato destacado para ser un número de Lychrel. É curioso que este tipo de números teñan nome, aínda que non se sabe se realmente existe algún.

Ningún comentario:

Publicar un comentario