Amosando publicacións coa etiqueta lóxica. Amosar todas as publicacións
Amosando publicacións coa etiqueta lóxica. Amosar todas as publicacións

xoves, 20 de xuño de 2024

Unha querencia particular e unha querencia compartida

Unha querencia particular

O meu profesor de matemáticas
 de 1º de BUP
Supoño que todo aquel que profundice un pouco no mundo das matemáticas terá querencia por algunhas demostracións, razoamentos ou resultados en especial. Moitos deles forman parte dunha cultura común compartida e outros quizais veñan dalgunha manía persoal. De entre estes últimos eu teño unha extravagante predilección polo anódino teorema do resto. Hai  razóns para que fixera esta escolla. Eu xa coñecía o resultado das clases da EXB, pero 45 anos depois aínda lembro perfectamente ese momento de arroubo cando nunha aula de 1º de BUP o profesor debuxou con xiz sobre o encerado negro a súa demostración. Non o podía crer, tan claro, tan simple, o razoamento de apenas tres ou catro liñas, funcionaba; podía aplicarse a calquera polinomio e a calquera valor numérico!. Naquel momento sentín con intensidade a necesidade de saber moito máis de matemáticas. 

Despois eu mesmo expliquei moitas veces o teorema do resto e moitas veces comprobei que boa parte do alumnado non era quen de entendelo, moito menos de apecialo. Tampouco nunca detectei a ningún alumno emocionado ante a demostración deste (ou doutro) teorema. Tamén é certo que o meu profesor de matemáticas de 1º de BUP non se había de decatar doutra cousa que non fose o meu coñecemento ou descoñecemento do teorema. 

Como nunca apareceu neste blogue, aproveito a ocasión para insertalo por aquí.

Teorema do resto. O resto de dividir un polinomio $P(x)$ entre $x-a$ é igual ao valor numérico de $P(x)$ para $x=a$.

Para demostralo fagamos a división de $P(x)$ entre $x-a$, obteremos un cociente $C(x)$ e un resto $R(x)$. Ademais, polo significado da división, verificaranse as seguintes condicións:

  1. $P\left ( x \right )=C\left ( x \right )\left ( x-a \right )+R\left ( x \right )$
  2. O grao de $R \left( x \right )$ é menor que o grao de $\left( x-a \right )$

Como  o grao de $\left( x-a \right )$ é $1$, o grao de $R\left ( x \right )$ ten que ser $0$. Isto significa que o resto ten que ser un número, de aí que poidamos escribir $R \left( x \right )=R$. Facendo este cambio na igualdade da primeira condición obtemos:

$$P\left ( x \right )=C\left ( x \right )\left ( x-a \right )+R$$

Calculando agora o valor numérico de $P(x)$ para $x=a$ temos:

$$P\left ( a \right )=C\left ( a \right )\left ( a-a \right )+R=C\left ( x \right )\cdot 0+R=R\quad\quad\square$$

Simple, claro, abranguente, isto é, fermoso.

Unha querencia compartida

Aquel mesmo ano que eu cursaba 1º de BUP emitiuse a serie televisiva de divulgación científica Cosmos, presentada por Carl Sagan. Canda esa emisión tamén se publicou o libro do mesmo título. Tanto a serie como o libro tiñan como obxectivo explicar os principais coñecementos astronómicos e abordaban este cometido usando moitas referencias da historia desta ciencia. Alén doutras consideracións, a min chamárame a atención un anexo final de dúas páxinas, cadansúa adicada a desenvolver matemáticamente un aspecto que se comentaba nalgún dos capítulos do libro. Nunha explicábase por que só podían existir 5 poliedros regulares e na outra demostrábase a irracionalidade da √2. 

Na páxina dedicada aos poliedros partíase dunha fórmula que daquela era completamente misteriosa para min, a fórmula de Descartes-Euler, que relaciona o nº de caras (C), o nº de vértices (V) e o de arestas (A), dun poliedro (homeomorfo a unha esfera, tal e como diría hoxe):

$$C+V-A=2$$

No libro indicábase que había unha bonita demostración no libro de Courant e Robins, Que é a matemática?, (páx. 248), mais daquela non tiña posibilidade algunha de consultar ese libro, nin imaxinaba que algún día chegaría a lelo. Aproveito a ocasión para recomendar outras dúas lecturas relacionadas coa fórmula de Descartes-Euler. A primeira é Probas e refutacións (Alianza Editorial) de Imre Lakatos; escrito en forma de diálogo, critica a visión formalista das matemáticas e ofrece como alternativa unha matemática construída heuristicamente. A segunda é A pérola de Euler (Gradiva) de David Richeson, que fai un percorrido histórico da fórmula. 

Por fin voume centrar na querencia compartida pola comunidade matemática que quería comentar. A xa referida demostración da irracionalidade de √2 . Lembro perfectamente que a lera con moito interese, pero non fora quen de entendela. Despois expliqueina na aula en moitas ocasións e decateime de que as primeiras veces, en cursos da ESO, foi un óso demasiado duro de roer. A demostración faise por redución ao absurdo. Consiste en supoñer que o contrario do que queremos demostrar é certo. Finalmente, e mediante razoamentos coidadosamente correctos, chegaremos a unha contradición. Concluiremos que a contradición procede da suposición falsa que fixemos, ergo, o seu contrario é verdadeiro. 

Metámonos en fariña: supoñamos que √2 é racional. Iso significa que pode escribirse como un cociente de números enteiros. Aínda máis, podemos escribilo como unha fracción irreducible, isto é, sen factores comúns a numerador e denominador. Sexa $\frac{m}{n}$ esa fracción irreducible. Elevémola ao cadrado:

$$\left (\frac{m}{n}  \right )^{2}=\left (  \sqrt{2}\right )^{2}=2$$

De aí que $m^{2}=2n^{2}$, polo tanto $m^{2}$ é par e entón $m$ tamén o ten que ser. Por iso poderemos escribir que $m=2m_{1}$. Elevemos ao cadrado esta última expresión (e recordemos que $2n^{2}=m^{2}$).

$$2n^{2}=m^{2}=\left (2m_{1}  \right )^{2}=4m_{1}^{2}$$

Comparando o primeiro e último membro destas igualdades obteremos $n^{2}=2m_{1}^{2}$, é dicir, $n$ tamén é par. Dicimos "tamén" porque xa viramos que $m$ era par. Velaquí a contradición, pois partíramos de que a fracción $\frac{m}{n}$ era irreducible, polo tanto $m$ e $n$ non poden ser ambos pares.

Unha das dificultades da comprensión deste razoamento reside en que hai que ter asumido previamente que estamos traballando nunha estrutura lóxica, que debe estar exenta de contradicións. Por iso, antes de explicar o anterior nunha aula sempre tomaba un tempo en relatar a famosa anéctota atribuída a Bertrand Russell cando nunha conferencia sobre sistemas dedutivos, na que tratara precisamente o asunto de que a introdución dunha falsidade nun deses sistemas daba lugar a poder demostrar calquera cousa. Un asistente retouno a demostrar que el era o Papa partindo de que $2+2=5$. Russell non se achantou e respondeu algo así:

- Se $2+2=5$, como $2+2=4$, deduciremos que $4=5$. Restando $3$ de ambos membros desta igualdade teremos que $1=2$. Como eu e mais o Papa somos dous, eu son o Papa. 

Se o alumnado ao que se lle relata a demostración da irracionalidade de √2, ten un profesor de filosofía que adica o tempo sufiente en traballar a lóxica, teremos os vimbios necesarios para poder presentala. En caso contrario o camiño vólvese costa arriba. 

Outra dificultade reside en non decatarse de que podemos esixir que a fracción $\frac{m}{n}$ sexa irreducible. O diálogo da aula podería ser o seguinte:

-(alumno) E que pasa se a fracción $\frac{m}{n}$ non é irreducible? 

- (profesor) Se temos unha fracción como $\frac{14}{10}$?

- (alumno) Si

- (profesor) Se temos unha fracción como $\frac{14}{10}$ poderemos reducila: $\frac{14}{10}=\frac{7}{5}$, entón eu escollo precisamente esta última. A esta é á que lle chamo $\frac{m}{n}$

- (alumno) Pero como sei eu que $\frac{m}{n}$ é $\frac{7}{5}$? E se segue sendo $\frac{14}{10}$? 

 Aquí o profesor sabe que posiblemente o alumno non o vai entender por máis que o intente. E aínda podemos engadir outra dificultade. O habitual é que a estas alturas o alumnado non estea habituado a razoamentos abstractos como estes que presentamos aquí. Pode sentirse incómodo ou inseguro ao enfrontarse a demostracións desta fasquía. Claro que se nunca ou en moi poucas ocasións se expón a elas, non chegará a encontrarse cómodo neste ámbito. 

Téñense feito estudos sobre o uso das demostracións no ensino non universitario. Velaquí o caso de M.  Arce et al ou da tese de C . dos Santos, que traballaron con profesorado de Ourense, Chaves e Valladolid. Se están no certo, hai unha tendencia a que o profesorado máis novo sexa tamén o que máis prescinde do uso das demostracións na aula. Teñamos presente que neses estudos fálase de "demostración" nun sendido moi laxo; unha "demostración" non é necesariamente unha dedución formal, pode ser, por exemplo, unha comprobación nalgúns casos particulares ou usando programas de xeometría dinámica. A cifra de docentes que declaran facer poucas demostracións na súa práctica docente supera o 50%. Isto é preocupante porque entendo que a alternativa é ofrecer unha matemática algorítmica, unha restra de procedementos mecánicos. Quizais aí haxa aulas, pero non de matemáticas.

Entendo que a comunidade social do profesorado de matemáticas distínguese por ter unha querencia común polas demostracións e os razoamentos matemáticos. Ese profesorado é o único axente que ten capacidade para transmitir eses saberes. Non podemos negarlle ese tesouro aos nosos alumnos. Non podemos traizoar así á sociedade que nos acolle.

domingo, 19 de xuño de 2022

Percorridos entre A e B

Nada máis simple que o que podemos ver nesta imaxe, un segmento entre dous puntos A e B. Nun principio parece que tan pouca cousa non pode dar para moito. Non é así.

Comecemos polo principio. No principio foi Euclides (III a.C.). Nos seus Elementos partía de 5 postulados. Recollo os seguintes aspectos e comentarios da edición feita pola USC, con tradución de Ana Gloria Rodríguez e Celso Rodríguez. O primeiro postulado era este:

[Postúlese] 1. Trazar unha liña recta dende un punto calquera ata un punto calquera

Precisamente nesa edición coméntase que isto implica a existencia de (polo menos) dous puntos. Tamén se resalta que, nun principio, non se pode trazar unha recta arbitraria a partir dun punto. A pesar do seu evidente éxito, no transcurso dos séculos Euclides había de ser criticado en moitos aspectos. Como xa teño comentado as críticas comezaban xa co primeiro postulado que establece a existencia dunha recta entre dous puntos calquera pero non se asegura a unicidade da mesma a pesar de que Euclides tamén dou isto por certo sen postulalo previamente. Decatémonos de que aínda non se estableceu que a liña poida ser infinita. Isto último será materia do segundo postulado:

[Postúlese] 2. E prolongar en liña recta de forma continua unha recta finita.

Este principio había de revelarse fundamental ao profundizar nos fundamentos da xeometría. Cando Giovanni Gerolamo Saccheri (1667-1733) quixo establecer a xeometría euclidiana como a única posible. Para este propósito elaborou dúas xeometrías alternativas nas que non se verificaba o polémico quinto postulado co obxectivo de chegar a unha contradición. Esas xeometrías serían posteriormente denominadas elíptica e hiperbólica. Na xeometría elíptica non tardaría en demostrar a finitude das rectas, a negación directa do segundo postulado, unha contradición evidente que era o que estaba buscando Saccheri. Despois creu obter unha "falsidade manifesta" dentro da xeometría hiperbólica pero foi unha saída en falso. 

Non quero insistir na axiomática da xeometría pois a este tema xa adicara un par de entradas (Axiomas de Euclides, Hilbert e Tarski.1 e Axiomas de Euclides, Hilbert e Tarski.2). O segmento AB é o esquema de moitos problemas das matemáticas escolares. Pensemos só en todos aqueles que teñen como protagonistas do seu enunciado un par de trens que parten de dous puntos A e B. Como non me quero meter nesta selva, inzada de problemas de todo tipo, voume centrar nun que recollo dun libro de título ben curioso. Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills, de Paul J. Nahin. De seguido presento unha versión libre da cuestión

Un paxaro vai de A a B e despois volve de B a A a unha velocidade v. Como é habitual neste tipo de propostas v é constante e o cambio de sentido é maxicamente inmediato. Sexa d a distancia entre os puntos A e B e t=2d/v o tempo que tarda en facer o percorrido de ida e volta. Introduzamos agora unha dificultade. Imos supoñer que o traxecto faise en presenza dun vento dunha velocidade constante w. Tamén consideraremos que w<v. Cando o vento sopre no mesmo sentido do corredor as velocidades súmanse : v+w. Cando o vento vai en sentido contrario ao corredor as velocidades réstanse: v-w. A cuestión é se o tempo que se tarda en facer o percorrido é menor con vento ou sen el.

Seguindo a Paenza, o mellor que poderiamos facer agora sería pensar no problema, quizais pensar nalgúns valores particulares para explorar, quizais modificar algo as condicións, pensar en casos extremos, en axudarnos doutro paxaro que parta de B mentras o primeiro parte de A, elaborar unha estratexia de abordaxe e levala a cabo,... Conviña facer algo disto antes de seguir lendo.

Paxaro indo de A a B

As condicións do problema dan  a impresión de que a pregunta garda unha trampa pois non se ten en conta unha terceira posibilidade, que ademais parece a máis lóxica, a de que o paxaro tarde o mesmo tempo con vento e sen el. Sorprendentemente a resposta non é esta. Poñamos por caso que a velocidade do paxaro é de 10 km/h e que a distancia entre A e B é de 10 km. Neste caso o tempo empregado no traxecto de ida e volta é de 2 horas. Cun vento soprando a 2 km/h o tempo empregado será:

$$\frac{10}{12}+\frac{10}{8}=\frac{200}{96}=\frac{25}{12}>2$$

Se xeneralizamos veremos que o tempo do percorrido é maior con vento que sen el:

$$\frac{d}{v+w}+\frac{d}{v-w}=\frac{d\left ( v-w \right )+d\left ( v+w \right )}{\left ( v+w \right )\left ( v-w \right )}=\\= \frac{dv-dw+dv+dw}{v^{2}-w^{2}}=\frac{2dv}{v^{2}-w^{2}}=\frac{2dv/v^{2}}{\left (v ^{2} -w^{2}\right )/v^{2}}=\\=\frac{2d/v}{1-\left ( w/v \right )^{2}}=\frac{t}{1-\left ( w/v \right )^{2}}\geq t$$
O vento non ten por que soprar na dirección marcada polo segmento AB pois se o fai noutra dirección só nos interesará a proxección do vector que indica a velocidade do vento sobre AB. Isto lévanos a sospeitar que se facemos un percorrido co mesmo punto de inicio e fin, o resultado vaia ser o mesmo. A sospeita é acertada, e quen a queira ver desenvolta pode consultar o libro de Paul Nahin. Isto ten unha consecuencia práctica importante no mundo do atletismo. En presenza de ventos de certa intensidade non se recoñecen determinadas marcas deportivas. Polo que acabamos de contar, nas carreiras nas que se dá un número enteiro de voltas á pista as marcas veríanse sempre perxudicadas polo vento, en consecuencia neste tipo de probas non ten sendido anular as marcas obtidas en presenza de vento. Pode que este resultado lle interese ao compañeiro Paulo González Ogando, que acaba de publicar un libro titulado Matemáticas y deporte (Catarata 2022)

mércores, 27 de abril de 2022

Matemáticas na Raia 2022 desde o meu outeiro

Este ano por diversas circunstancias non apuntei ao alumnado de 3º ESO do IES Antón Losada ao certame de Matemáticas na Raia organizado por AGAPEMA e a APM. Así que seguín o concurso desde o meu outeiro, sen mollarme, mais sen desfrutar da súa caloriña.

Vou deixar por aquí os tres últimos problemas da edición deste ano.

3. A ferradura. Na construción dunha mesquita, coma noutras construcións árabes, empregouse moito o arco de ferradura. A súa forma está baseada no círculo, aínda que non chega a ser completo, pero si supera o semicírculo. 

O arco de feradura da figura está construído de forma que o segmento AB mide 1 metro, igual que o raio do círculo interior, e a altura das columnas que os sustentan é de 2 metros. Cal é a área da zona sombreada correspondente ao oco do arco máis o ocos entre as columnas?

No orixinal non aparecía a axuda da dereita

Como no seguinte problema aparece un triángulo de números, seguro que nos vén á cabeza un relampo do triángulo de Pascal. Claro que o alumnado de 3º da ESO non ten aínda esa referencia. De todas formas o triángulo de Pascal non ten nada que ver con este problema. Trátase dun bo exercicio de xeneralización. Non descarto usalo o vindeiro curso ao traballar o tema de progresións.


4. Camiños. O triángulo de números

Un camiño 1-2-3-4-5-6 é unha liña quebrada formada por segmentos horizontais e vertricais que pasan polos números 1, 2, 3, 4, 5, 6.

a) Cantos camiños 1-2-3-4-5-6 hai?

b) Se prolongamos ese triángulo de números da forma en que está contruído ata 20 filas, cantos camiños 1-2-3-4-...-20 hai?

c) Se procedemos desta maneira ata "n" filas, cantos camiños 1-2-3-4-...-n hai?

A miña experiencia dime que o último dos problema propostos debeu ser o que máis dificultades e bloqueos lles debeu producir aos participantes no concurso deste ano. Así tamén foi o caso do certame de Matemáticas na Raia do 2020. Daquela puidera comprobar que nin os meus alumnos nin os do IES que fóra vixiar eran quen de atacar outro problema de lóxica que se propuxera aquel ano (se seguides a ligazón iredes a unha entrada deste blogue publicada o "día do papel hixiénico", é dicir, o día en que comezou o confinamento)

5. Tarxetas lóxicas. Cantas frases falsas hai en cada tarxeta?

Tarxeta 1:

A. Nesta tarxeta, hai exactamente unha frase falsa       

B. Nesta tarxeta, hai exactamente dúas frases falsas.

C. Nesta tarxeta, hai exactamente tres frases falsas.

D. Nesta tarxeta, hai exactamente catro frases falsas.

E. Nesta tarxeta, hai exactamente cinco frases falsas.

F. Nesta tarxeta, hai exactamente seis frases falsas.

Tarxeta 2:

A. Nesta tarxeta, ningunha frase é falsa.

B. Nesta tarxeta, polo menos unha frase é falsa.

C. Nesta tarxeta, polo menos dúas frases son falsas.

D. Nesta tarxeta, polo menos tres frases son falsas.

E. Nesta tarxeta, polo menos catro frases son falsas.

F. Nesta tarxeta, todas as frases son falsas.

mércores, 15 de xullo de 2020

Axiomas de Euclides, Hilbert e Tarski.2

Despois de repasar a axiomática de Euclides e Hilbert, pasamos á de Tarski.

Os axiomas de Tarski
Finalmente chegamos ao que foi orixe de toda esta entrada, aos axiomas de Tarski, que puiden coñecer a partir do artigo de António Bívar do libro Treze viagens pelo mundo da matemática (U. Porto Edições, 2010). Alén deste artigo o libro é moi recomendable pois trata desde unha perspectiva case divulgativa trece aspectos moi diversos e interesantes das matemáticas a un nivel dos primeiros cursos universitarios.
A axiomática de Alfred Tarski (1901-1983) é destacable pola súa economía de recursos. Trátase dun sistema elaborado nunha linguaxe de primeira orde, polo que polo teorema de Löwenheim-Skolem,baixo a hipótese de consistencia, sabemos que terá un modelo contable. Como nota aparte non me resisto a contar unha anécdota dunha clase da materia de Lóxica en 4º-5º de carreira. Foi o caso de que o profesor nos foi presentando o que pretendía ser un conxunto de axiomas para os números reais nunha linguaxe de primeira orde. Outra vez, usando o teorema de Löwenheim-Skolem, demostrounos que o cardinal do conxunto dos número reais era ℵ0. A ningún dos alumnos nos estrañou, non sei se foi porque a esas alturas da carreira xa tragabamos con todo ou porque a clase era un día de calor ás catro da tarde.
Volvendo ás características das axiomática de Tarski para a xeometría, destacar que só emprega dúas operacións elementais, a igualdade e a pertenza, unicamente un obxecto primitivo (os puntos) e dúas relacións primitivas (congruencia e "estar entre"). Así escribiremos xy≡zw para indicar que os segmentos zy e zw teñen a mesma lonxitude e Bxyz co significado de que "y está entre x e z". Imos alá cos primeiros axiomas:
  • T.1. (Reflexividade simétrica) xy≡yx
  • T.2. (Transitiva)   xy≡zw∧xy≡uv ⟶ zw≡uv
A partir destes axiomas obtense a reflexividade da congruencia: xy≡xy e a transitividade na súa versión usual: xy≡zw∧xy≡uv ⟶ zw≡uv . De aí que a congruencia sexa unha relación de equivalencia. Con todo aínda cómpre o seguinte axioma:
  • T.3. (Identidade da equidistancia) xy≡zz ⟶ x=y
Comencemos a introducir os axiomas de ordenación. O seguinte garante que en calquera semirecta ox podemos construír un segmento xy congruente cun uv prefixado.
  • T.4. ∀o, x, u, v  ∃y (Boyx ∧ uv≡yx)
Con este novo axioma pódese demostrar que xx≡yy ou que Bxyy
O seguinte axioma establece que no segmento xx só existe un punto:
  • T.5. Bxyx ⟶ x=y
Tal e como sucedía na proposta de Hilbert, Tarski tamén precisa do axioma de Pasch. Velaquí a súa versión:
  • T.6.  (Axioma de Pasch) Bxuy ∧ Bvwy ⟶  ∃z (Buzy ∧ Bwzx) 




Agora pódese demostrar a simetría na relación "estar entre": Bxyz ⟶ Bzxy . Tamén se verificará o teorema de intercalación:   Bxyw ∧ Byzw  ⟶  Bxyz. Coas mesmas hipóteses que as deste teorema esperamos poder obter tamén Bxzw. Mais cos axiomas dados ata aquí iso aínda non é posible.
Este é o momento no que António Bivar explica as razóns para introducir o sétimo axioma, que ten que ver coa necesidade de establecer cando dous ángulos son iguais.
  • T.7. (Axioma dos cinco segmentos) (ox≡o'x'∧oy≡o'y'∧xy≡x'y'∧o ≠ y ∧ Bxyz ∧Bx'y'z' yz≡y'z') ⟶  xz≡x'z''
Este axioma dá lugar a varios resultados importantes. O primeiro deles é que permite realizar sumas de segmentos. Concretamente:  (Bxyz    Bx'y'z' ∧ xy≡x'y'∧yz≡y'z' ) ⟶  xz≡x'z'
En segundo lugar, temos tamén a unicidade do transporte de segmentos:
(x ≠ y ∧ Bxyu ∧ Bxyv yu≡yv) ⟶  u=v
En terceiro lugar, preséntase o chamado teorema de concatenación: 
(Bxyz ∧ Byzu y ≠ z)  ⟶ (Bxzu ∧ Bxyu )
Finalmente, o seguinte resultado, o teorema de conectividade, foi incluído nun principio como axioma ata que despois de varias décadas  Haragauri Narayan Gupta (1925-2016) demóstrao no 1965 a partir dos sete axiomas anteriores.
(Bxyz ∧ Bxyu x ≠ y)  ⟶ (Bxzu ⋁ Bxuz )
Con todo o establecido ata aquí podería haber modelos lineares para esta xeometría. Para facela máis rica pódese engadir un novo axioma que asegure unha dimensión maior ou igual a 2, isto é, que existen tres punto non colineares.
  • T.8. (Axioma da dimensión inferior)  ∃ x, y, z (ㄱBxyz ∧ ㄱByxz ∧ ㄱByzx)
Unha vez chegados a este punto faise unha avaliación do estado desta xeometría básica. Para iso bota man do teorema I.10 de Euclides, que é o que establece como achar o punto medio de calquera segmento. Euclides usa un resultado non explicitado por el en ningures, o que a segura que dúas circunferencias no plano se intersecan en dous puntos sempre que a distancia entre os centros sexa menor que a suma dos raios e maior que a súa diferenza. Resulta que os oito axiomas de Tarski tampouco garanten este resultado. Para estarmos certos desta intersección cómpre introducirse no pantanoso mundo da continuidade, é aquí onde hai que introducir xa non só un axioma, senón todo un esquema de axiomas para poder realizar os cortes de Dedekind. Esta idea está presentada na entrada da Galipedia sobre os axiomas de Tarski, porén António Bivar, nun principio, non vai por este camiño. Como punto de referencia, na axiomática de Hilbert resólvese a cuestión grazas aos axiomas sobre ángulos.
A cuestión que propón António Bívar pasa precisamente polo concepto de ángulo. Normalmente consideramos un ángulo ∠xoy como a rexión do plano entre as semirectas ox e oy. Aquí xurde o seguinte problema. Cos oito axiomas establecidos ata o momento pódese demostrar que se Bxuy (u é un punto entre x e y) e Bozu (z está entre o e u), entón existirá un punto y' no segmento oy tal que Bxzy'. Porén, se z está máis alá de u, isto é, se Bouz, entón non se pode asegurar a existencia de puntos x' e y' na semirectas ox e oy respectivamente de forma que Bx'zy'. Isto é, que o ángulo ∠xoy non está formado polas semirectas que parten de o. Así que se introduce este resultado como axioma.
Necesidade do axioma de Euclides



  • T.9. (Axioma de Euclides) (Bxuy ∧ u≠o ∧Bouz) ∃ x', y' (Boxx' ∧ Boyy' ∧ Bozz')
Agora estamos en disposición de demostrar o teorema de Playfair, o de Desargues e o de Pascal. Todo isto permite desenvolver unha teoría de proporcións e construír un corpo pitagórico, isto é, un corpo no que a suma de dous cadrados é tamén un cadrado. Un modelo podería ser o conxunto Ω de Hilbert presentado máis arriba. O propio Hilbert comentaba que pola estrutura deste conxunto, o conxugado de calquera elemento de Ω tamén está en Ω . Se agora quixeramos construír un triángulo rectángulo de hipotenusa 1 e con un cateto $$\sqrt { 2 } - 1 $$, o outro cateto debería medir $$\omega=-2+2\sqrt {  2  } $$ Se ω∈Ω entón tamén debería estar o seu conxugado, pero este é $$\sqrt{-2-2\sqrt {  2  } }$$, un número imaxinario, cando resulta que Ω está contido dentro dos reais. Polo tanto esta construción non pode realizarse en Ω, mais si se podería facer con regra e compás.
Para sermos máis concretos, Hilbert estudara que construcións xeométricas eran as que podían realizarse en Ω e concluíra que eran aquelas nas que se podían usar a regra e o transportador de unidades (un instrumento que fai posible o transporte do segmento unidade).
Con todo isto aínda non teriamos uns sistema axiomático para a recta real pois ficaría orfa a propiedade da completitude. As sucesións de Cauchy ou as de intervalos encaixados non teñen límite. Co fin de aseguralo pódese aínda introducir un axioma de continuidade pero, iso sí, non poderemos redactalo nunha linguaxe de primeira orde porque se fai referencia a conxuntos arbitrarios de puntos X e Y.
  • T.10. (Axioma de continuidade) [∀ X, Y /  ∃ o (x∊X ∧ y ∊Y ⟶ Boxy)] ⟶ [ (x∊X ∧ y ∊Y) ⟶ ∃ p / Bxpy ]
Velaquí que cada vez que temos dous puntos colineares con o dos conxuntos X e Y, vai haber un punto intermedio entre eles.
Con estes vimbios pódese demostrar o que neste contexto xa sería o teorema de Arquímedes, así como a e a isomorfía entre todos os modelos verificando estes dez axiomas.


martes, 14 de xullo de 2020

Axiomas de Euclides, Hilbert e Tarski.1

Un libro do espazo
pero non espacial


Sempre me pareceu moi divertido que na librería "Follas Novas" colocasen o libro Ideas de espacio de Jeremy Gray (Mondadori 1992) entre os de viaxes espaciais e non entre os de xeometría. Téñolle moito cariño a este volume pois foi o primeiro de certa entidade que lin ao acabar a carreira. Lembro moi ben que o fixera durante unha semana de acampada nun monte próximo a Mombuey. Tamén me había de servir como guía para preparar un dos temas das oposicións, o da historia da xeometría. En efecto, Jeremy Gray fai un percorrido polos avances da xeometría tomando como eixo vertebrador o V postulado euclidiano. Aquí non pretendo tanto, só ir saltando polos principais sistemas axiomáticos da xeometría euclidiana; isto é, o sistema do propio Euclides, o de Hilbert e o de Tarski.




Os postulados de Euclides
Elementos, en galego
É ben coñecido que o paradigma dos sistemas axiomáticos son os Elementos. Despois dunha lista de 23 definicións, Euclides (III a.C.) establece os seus cinco postulados:
  • E.1. Trazar unha liña recta dende un punto calquera ata un punto calquera
  • E.2. E prolongar en liña recta de forma continua unha recta finita
  • E.3. E debuxar un círculo con calquera centro e distancia.
  • E.4. E que todos os ángulos rectos son iguais entre si.
  • E.5. E que, se unha recta ó incidir en dúas rectas fai os ángulos do interior e do mesmo lado menores que dous ángulos rectos, as dúas rectas, prolongadas ó infinito, atópanse no lado no que están os ángulos menores que dous rectos.
Recollinos tal e como aparecen na tradución ao galego que fixeron Ana Gloria Rodríguez e Celso Rodríguez, publicada pola USC
Despois de establecer estas raíces, e sen máis adobíos que algunha que outra definición máis, a árbore crece durante 13 libros ata formar a primeira enciclopedia sistemática das matemáticas.

Críticas a Euclides
A pesar da grandeza dos Elementos, co tempo acharíanse varias fendas no sistema euclidiano. Xa na primeira proposición do primeiro libro suponse que dúas circunferencias con centros nos extremos do segmento AB e compartindo o raio AB teñen que cortarse nun punto Γ. O  postulado E.5 establece unha condición para que se corten dúas rectas. Retrospectivamente podemos enxergar que se precisaría tamén outro postulado que establecese o corte de circunferencias. O que cómpre é garantir a continuidade das liñas. Quen habían de profundar neste tópico serían Richard Dedekind (1831-1816) e Georg Cantor (1845-1918) entre outros.
Tamén o primeiro postulado foi obxecto de crítica pois Euclides asumiu en varios lugares a unicidade da recta que se asegura pasa por calquera par de puntos dados cando o que se enuncia neste postulado é unicamente a súa existencia.
O segundo postulado só garante o carácter ilimitado dunha recta, non a súa infinitude. Quen estableceu para sempre esta distinción había de ser Bernhard Riemann (1826-1866) na súa disertación perante Gauss. Euclides emprega o carácter infinito da recta en I.16, a proposición que establece que un ángulo exterior dun triángulo é maior que calquera dos interiores opostos.
Na proposición I.21 Euclides toma como certo que se unha recta corta a un dos vértices dun triángulo, ten por forza que cortar o lado oposto. Mais este resultado nin se demostra, nin se podía demostrar baixo a axiomática dos Elementos pois nela non hai ningunha referencia á ordenación (o concepto "estar entre"). Quen incidiu neste aspecto sería Morlitz Pasch (1843-1930). Este matemático alemán propuxo a primeira axiomática moderna da xeometría, precursora da de David Hilbert (1862-1943)

Os axiomas de Hilbert
O reinado dos Elementos esténdese ata o XIX, momento no que xorden tanto as xeometrías non euclidianas como os proxectos de axiomatización nas matemáticas, especialmente a aritmética. Nesta altura estaban de moda os estudos sobre os fundamentos e non foron poucos os traballos adicados aos da xeometría. De entre todos eles destaca o de Hilbert, quen elabora un profundo tratado sobre a axiomatización desta área, Fundamentos da xeometría. Para iso establece cinco grupos de axiomas. Poño algúns exemplos:
  • Algúns axiomas de enlace:
H.I.1. Dados dous puntos A e B, sempre existe unha recta a que os contén.
H.I.2. Dados dous puntos A e B, só existe unha recta que pase por eles
H.I.3. Nunha recta hai polo menos dous puntos. Tamén existen polo menos tres puntos  non aliñados.
  • O seguinte grupo de axiomas son os de ordenación:
H.II.1. Cando B está entre os puntos A e C, e son distintos puntos dunha recta, B tamén está entre C e A.
H.II.2. Dados dous puntos A e C, sempre existirá outro punto B na recta AC tal que B está entre A e C.
H.II.3, Dados tres puntos nunha recta, como moito un deles está entre os outros dous.
H.II.4. (Axioma de Pasch) Dados tres puntos A, B e C non aliñados e unha recta a no plano ABC que non contén a ningún dos puntos, se a corta a AB, entón corta tamén a AC ou a BC
  • Axiomas de congruencia de Hilbert:
H.III.1. Dados os puntos A e B e o punto A' da recta a', existe un único B' nun dos lados da recta a' determinado por A' de forma que AB é congruente con A'B' (AB≡A'B')
H.III.2. Se os segmentos A'B' e A''B'' son congruentes a AB, tamén serán congruentes entre si.
H.III.3. Se AB≡A'B' e BC≡B'C', entón AC≡A'C'
H.III.4. Dado un ángulo definido polas semirectas h e k ∠(hk), e dada outra semirecta h', existe unha única semirecta k' tal que ∠(hk) ≡ ∠(h'k')
H.III.5. Se dous triángulos ABC e A'B'C' verifican que AB≡A'B' e AC≡A'C' e ∠BAC ≡ ∠B'A'C', entón tamén ∠ABC ≡ ∠A'B'C'.
Este último axioma é a proposición I.IV dos Elementos, o coñecido teorema de congruencia de triángulos LAL.
  • O cuarto grupo de axiomas hilbertiano é ben reducido, tanto que se reduce a un único postulado, o das paralelas:
H.IV.1. (Axioma de Playfair) Sexa a unha recta e A un punto exterior á recta, entón existe como moito unha recta paralela a a pasando por A.
  • Os últimos axiomas son os de continuidade. O primeiro deles é o que abre a porta á aritmetización da xeometría.
H.V.1. (Axioma de Arquímedes) Dados AB e CD, existen n puntos  puntos A1, A2 , A,...., An   con A1=A,  AiAj≡ CD de forma que o punto B queda entre A1e An
Axioma de Arquímedes

H.V.2. (Axioma de completitude) Os puntos dunha recta forman un sistema tal que non se pode ampliar baixo os axiomas H.I.1, H.1.2, H.II, H.III.1 e H.V.1
Este último axioma é o único deste sistema que non pode ser formalizado nunha linguaxe de primeira orde e ten claramente un enunciado ben distinto dos anteriores. Prima facie non o parece, pero é o que introduce a continuidade dentro da axiomática de Hilbert. Se excluímos H.V.2 poderían ser modelos desta xeometría estruturas "descontinuas" tales como o conxunto dos números racionais ou o conxunto Ω, que introduce Hilbert no principio do capítulo II dos Fundamentos e que estaría formado por todos os números que poden obterse a partir do 1 mediante sumas, restas, produtos divisións e unha quinta operación dada por $$\sqrt { 1+{ \omega  }^{ 2 } } $$
Tendo en conta a seguinte relación o conxunto de Hilbert estaría formado, ademais das combinacións das catro operacións, polas raíces cadradas das sumas de cadrados $$\sqrt { { a }^{ 2 }+{ b }^{ 2 } } =a\sqrt { 1+{ \left( \frac { a }{ b }  \right)  }^{ 2 } } $$
Quizais na lectura do axioma de completitude enxérgase máis facilmente outra interpretación que tamén se verifica, a de que este axioma asegura a categoricidade, isto é, que todos os modelos deste sistema axiomático son isomorfos.
Unha cuestión interesante é a de preguntarse polas razóns que levaron a Hilbert a introducir o axioma de completitude para caracterizar a continuidade cando tiña alternativas coñecidas tales como a dos cortes de Dedekind, a dos intervalos encaixados de Cantor, ou o teorema de Bolzano-Weierstrass. Hilbert tiña como obxectivo fundamentar una xeometría asentada sobre o corpo dos números reais, de aí que botase man do axioma de Arquímedes. Este axioma facilita o establecemento dunha medida. Entón Hilbert avísanos de que "o axioma de completitude que só esixira a conservación deses axiomas [os dos grupos I, II e III], pero non o de Arquímedes ou outro que lle corresponda, encerraría unha contradición"

Ben sei que ler esta entrada custa traballo. Se ben o estudo desde o punto de vista da lóxica de partes das matemáticas é moi instrutivo e revelador, cómpre manter un certo nivel de esforzo e concentración para aprehender os contidos. Tendo en conta o anterior e que a entrada xa vai tendo unha lonxitude considerable, deixamos a abordaxe da perspectiva de Tarski para outra entrada.

venres, 13 de marzo de 2020

Un problema das Olimpíadas de Singapur nas "Matemáticas na Raia"

Había xa varios anos que non tiña que impartir clase en 3º da ESO, así que cando me tocou este ano, o primeiro que pensei foi en participar en "Matemáticas na Raia", unha actividade de resolución de problemas co-organizada entre AGAPEMA (Asociación Galega de Profesorado de Educación Matemática) e a APM (Associação de Professores de Matemática). Meu dito, meu feito. Alá fomos.
A proba consiste na resolución de 5 problemas en 90 minutos. Na actividade participa toda unha clase que pode ter todo tipo de material, agás ordenadores, móbiles ou calquera tipo de conexión co exterior.
Cando lle preguntei aos meus alumnos sobre como lles fóra a proba, destacaron sobre todo a dificultade do 3º problema, o titulado "Aniversario".
Despois da proba buscaron en internet unha posible solución (quen dixo que o alumnado de secundaria non ten ningún tipo de interese?) e explicáronme que se trataba dun problema da Olimpíada Matemática de Singapur. Efectivamente, acabou sendo coñecido como o problema do aniversario de Cheryl e se hoxe incluso ten unha entrada na Wikipedia é porque no seu día se fixo viral (14/04/2015) . Aventuro que foi utilizado para debater sobre o ensino das matemáticas e comentar as diferenzas entre o dos países orientais, o dos occidentais, e máis concretamente o de cada país.
Entendo que algúns presupoñían que se era un problema proposto para rapaces de 14 anos, quizais debería poder ser abordado por calquera que teña os estudos básicos. Aquí estariamos obviando que non se trataba dunha proba ordinaria, senón dunha olimpíada matemática. Agora achámolo recollido nunha actividade galego-portuguesa, non nunha proba de avaliación regrada nin nunha reválida.
Imos ao conto. Velaquí o problema. Veremos que nesta versión Cheryl acabou sendo Helena:

Problema do aniversario de Cheryl. Versión AGPEMA-APM. Alberte e Carlos acábanse de facer amigos de Helena e queren saber cando é o seu aniversario. Helena dálles unha lista de 10 posibles días: 
15 de maio, 16 de maio, 19 de maio, 
17 de xuño, 18 de xuño, 
14 de xullo, 16 de xullo, 
14 de agosto, 15 de agosto e 17 de agosto. 
Helena entón dilles por separado a Alberte o día e a Carlos o mes do seu aniversario. Segue o diálogo: 
Alberte: Non sei cando é o aniversario de Helena, pero sei que Carlos tampouco o sabe. 
Carlos: Ao principio non sabía cando era o aniversario de Helena, pero agora seino 
Alberte: Entón eu tamén sei cando é o aniversario de Helena. 
Cando é o aniversario de Helena? 
Cando se propón un problema, antes de continuar, sempre convén un tempo de reflexión e traballo para resolvelo.

---------------------------------------------------------------------------------

Ao principio supuxen que, agás os nomes dos protagonistas do problema, o resto era unha tradución  do problema proposto en Singapur. Mais a cousa non era así. Finalmente fun dar con outra versión, anterior no tempo á de Singapur, que nun sentido moi preciso é máis semellante á de "Matemáticas na Raia" que a que tivo unha difusión masiva nas redes. Non atraso máis a exposición do problema orixinal que, agás os nomes propios, era o seguinte:
Problema do aniversario de Cheryl. Versión Singapur. Alberte e Carlos acábanse de facer amigos de Helena e queren saber cando é o seu aniversario. Helena dálles unha lista de 10 posibles días: 
15 de maio, 16 de maio, 19 de maio, 
17 de xuño, 18 de xuño, 
14 de xullo, 16 de xullo, 
14 de agosto, 15 de agosto e 17 de agosto. 
Helena entón dilles por separado a Alberte o mes e a Carlos o día do seu aniversario. Segue o diálogo: 
Alberte: Non sei cando é o aniversario de Helena, pero sei que Carlos tampouco o sabe. 
Carlos: Ao principio non sabía cando era o aniversario de Helena, pero agora seino 
Alberte: Entón eu tamén sei cando é o aniversario de Helena. 
Cando é o aniversario de Helena?
 Xa que logo, temos dous problemas. O primeiro é achar a diferenza co anterior, e o segundo resolvelo con esta nova redacción. Cal é máis difícil? Incluso sen ler os enunciados ou sen decatarme da diferenza, eu tería a resposta clara.
Por certo, as solucións das distintas versións tamén son distintas.

Como regalo, un par de problemas da Olimpíada de Singapur para o mesmo nivel (3ºESO):
🔘 Os números de Fibonacci son 1, 1, 2, 3, 5, 8, 13... onde cada termo despois do segundo obtense sumando os dous termos anteriores. Cantos dos 2014 primeiros números de Fibonacci son impares?
🔘 Sexa x un número tal que $${ x }+\frac { 1 }{ { x } } =5$$. Acha o valor de $${ x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } $$

O feito de participar na actividade de "Matemáticas na Raia" a min deume para escribir esta entrada. Teño a certeza de que aos meus alumnos de 3º lles deu para aprender e interesarse máis polas matemáticas.

mércores, 28 de decembro de 2011

1+1=2







Esta demostración vai polos 100 anos, que son os que ten a edición dos Principia Mathematica de Russell e Whitehead.
No segundo tomo, terceira parte, despois de establecer sobre fundamentos lóxicos os principios xerais das matemáticas, tócalle por fin o turno a unha proposición que eventualmente pode ter a súa utilidade: 1+1=2.
Aínda bo foi que a alguén tivo a idea de demostralo, agora, cando alguén me pregunta polo asunto, remítome a citarlle esta referencia e quedo como un rei.
(Despois había de vir quen desmontase este marabilloso edificio, mais esa é outra historia.)