Amosando publicacións coa etiqueta xeometría proxectiva. Amosar todas as publicacións
Amosando publicacións coa etiqueta xeometría proxectiva. Amosar todas as publicacións

luns, 1 de marzo de 2021

A sorpresa 3D no teorema de Monge

Cando estudamos xeometría do plano, pode darse o caso de que se acudimos a ferramentas tridimensionais, obteñamos atallos realmente sorprendentes. Este tópico xa o ten tratado JJ no seu blogue Matemáticas na Rúa ( [1] e [2]). Agora eu non puiden resistir desenvolver aquí outro caso que me pareceu realmente espectacular e que ten que ver co teorema de Monge, así denominado na honra do revolucionario, e matemático, Gaspard Monge (1746-1818). Antes de nada algunhas palabras de introdución.

Dadas dúas circunferencias podemos pensar en trazar as rectas tanxentes comúns a ambas. En xeral obteremos dúas solucións. Por unha banda teremos as dúas tanxentes exteriores e por outra as dúas tanxentes interiores. Os puntos de corte das tanxentes son os chamados centros de homotecia, un deles será o centro de homotecia externo O e o outro o centro de homotecia interno O'. En efecto, dúas circunferencias serán sempre semellantes, polo tanto poderemos transformar unha na outra mediante unha (normalmente dúas) homotecia(s).  

 

Se no canto de considerarmos dúas circunferencias, poñemos en xogo tres, estaremos en disposición de enunciar o teorema de Monge. Neste caso, cada un dos tres pares de circunferencias que podemos formar dará lugar a un centro de homotecia exterior.

Teorema de Monge. Dadas 3 circunferencias, os tres centros de homotecia exteriores correspondentes a cada par de circunferencias son colineares.

 

 Curiosamente este teorema recorda outro resultado moi semellante que en lugar de facer referencia a 3 circunferencias, trata sobre 2 triángulos.  Debémosllo ao precursor da xeometría proxectiva Girard Desargues (1591-1661).

Teorema de Desargues. Se as rectas que unen os vértices homólogos de dous triángulos se cortan nun punto O (o centro de homoloxía), entón os pares de lados homólogos córtanse en tres puntos colineares.

 

 En realidade non só se dá a implicación, senón que é certa a equivalencia. 

É moi gratificante comprobar que se pode demostrar o teorema de Monge a partir do de Desargues. Así os triángulos fanlle un bo servizo ás circunferencias, tal e como se diría no Flatland de Edwin Abbot.

Para iso basta con considerar os dous triángulos seguintes. O primeiro, o formado polos centros A, B e C das circunferencias. O segundo, o determinado polas interseccións das tanxentes exteriores: A', B' e C'.


 A'A, B'B e C'C son as bisectrices dos ángulos do triángulo A'B'C' polo que se cortarán no incentro O. De aí que os triángulos ABC e A'B'C' verifican as condicións do teorema de Desargues polo que os puntos de corte de AB e A'B', AC e A'C' e de BC e B'C' serán colineares.

A sorpresa

A sorpresa é a seguinte demostración alternativa do teorema de Monge na que se se fai uso da terceira dimensión. Cada unha das tres circunferencias, ao rotaren sobre calquera dos seus diámetros, darán lugar a unha esfera. Agora, o plano no que estamos traballando, chamémoslle plano П, atravesa esas esferas polos seus centros. É obvio que podemos pousar un plano П' tanxente ás tres esferas que cortará a П na recta desde a que podemos trazar tanxentes ás tres circunferencias. 

Grazas a esta applet de Tungsteno podemos ver esta imaxe ilustrativa.


 


П'é un plano tanxente a cada un dos conos con vértices en P, Q R que teñen como xeneratrices as rectas tanxentes ás circunferencias.


mércores, 18 de novembro de 2020

As perlas de Jorge Nuno Silva na Gazeta de Matemática

 A Gazeta da Matemática é unha  das publicacións a cargo da Sociedade Portuguesa da Matemática. Ten unha periodicidade cuadrimestral e despois de pasado un ano pódese descargar libremente. Un dos apartados máis gorentosos é o artigo de Jorge Nuno Silva, profesor da Universidade de Lisboa, moi interesado na matemática recreativa, polo que os seus artigos na Gazeta son fulgurantes perlas deste aspecto das matemáticas. Van de seguido algunhas alfaias deste colar. O primeiro, un problema que ten unha moi boa inserción no currículo da secundaria e que apareceu no nº 187 desa publicación:

O casino das diferenzas.Un xogador paga 2 € para lanzar dous dados cúbicos normais e gaña, en euros, o valor absoluto da diferenza entre os valores que saian no lanzamento, agás se sae dobre, pois neste caso lanza de novo. Este xogo é bo para a casa ou para o apostador?

Jorge Nuno participa nas actividades anuais de homenaxe a Martin Gardner. No número 186 recolle este sorprendente problema do mestre da divulgación:

División entre irmáns.  Dous irmáns acordan vender un rabaño de ovellas, propiedade común de ambos. Curiosamente, cada ovella rende un número de euros igual ao número de ovellas do rabaño. O comprador paga en billetes de 10 € máis voltas (as voltas corresponden a un valor inferior a 10 €).

Para efectuar unha división equitativa do diñeiro, os irmáns comezan por, alternativamente, retirar un billete de 10 €, comezando polo máis vello. Resulta que o último billete tamén lle toca ao irmán máis vello, polo que o máis novo se queixa. O máis vello doulle todas as voltas, mais con todo o outro continúa a súa protesta. Entón, o maior dille: "Voute dar un cheque co que che debo para ficarmos iguais"

De canto era o cheque?

No nº 184 recolle un problema do Liber Abaci, de Leonardo de Pisa, un clásico:

Herdanza do Liber Abaci. Un pai divide  a súa herdanza entre os fillos da seguinte maneira. O primeiro recibe un euro e un sétimo do restante; o segundo ten dereito a dous euros e un sétimo do restante, e así sucesivamente. Acontece que todos reciben cantidades iguais. Cantos son os fillos? A canto lle toca a cada un e canto era a herdanza?

Jorge Nuno aínda se pregunta que pasaría se no canto de termos 1/7 no enunciado tivésemos 1/9, e se fose 1/n?

No número 180, nun artigo titulado Comunicação invisibel informa sobre un problema da Olimpíada Matemática de Moscú. Ao tratarse dun problema con cartas dunha baralla non é de estrañar que tamén fose tratado por ese matemago chamado Pedro Alegría nun artigo titulado Magia olímpica.  :

Comunicación invisible. Repártense as  cartas do 1 ao 7 dun mesmo pau. Hai tres xogadores, Andrey, Boris e Sergey. Tres cartas para cada dun dos dous primeiros e a que queda para Sergey. Ningún deles sabe das cartas que recibiron os outros. Será posible que Andrey e Boris teñan unha conversa, en voz alta e diante de Sergey, de forma que coñezan a distribución das cartas e que Sergey continúa a saber só cal é a súa?

Jorge Nuno explícanos que o problema estaba pensado para que se resolvera usado a artimética modular. Supoñamos que o reparto foi 2, 4 e 6 para Andrey, 3, 5 e 7 para Boris e 1 para Sergey. Se Andrey suma a súas cartas módulo 7 : 2+4+6=12 ≡ 5 (mód.7) e di este último resultado en alto, Boris pode engadir este número á suma das súas: 5+(3+5+7)=20=1 (mód.7). Tendo en conta que  a suma dos valores de todas as cartas 1+2+...+7=0 (mód.7) Boris sabe que Sergey ten que ter un 6,  a diferenza entre 7 e a suma módulo 7 obtida por el. Entón Boris podería anunciar en alto a carta que ten Sergey co que inmediatamente Andrey sabería tamén as que teñen todos.

O mellor de todo é que se nos informa doutra solución realmente orixinal na que se usa... o plano de Fano! 

O plano de Fano é o plano con menos puntos (e rectas) que podemos atopar na xeometría proxectiva: un total de 7 puntos (e polo tanto de 7 rectas).  Cada recta ten 3 puntos, de aí que en cada punto converxan 3 rectas. Da mesma maneira que en dúas rectas hai un total de 5 puntos (un deles pertence ás dúas), dous puntos pertencen a un total de 5 rectas. Tamén diremos que 3 rectas non converxentes nun punto conteñen un total de 6 puntos, ou reciprocamente que 3 puntos non colineares están nun total de 6 rectas. Todo isto vese inmediatamente na imaxe do plano de Fano.

O plano de Fano... útil?

Pero deixemos de dar voltas e centrémonos no problema. Basta con que Audrey mostre o plano de Fano etiquetando os puntos cos números do 1 ao 7, anunciando que as súas cartas se corresponden cunha das rectas. Quedan 4 puntos correspondentes aos outros dous xogadores. Os tres puntos de Boris non poden estar aliñados xa que, nese caso a súa recta cortaría á recta de Audrey e, polo tanto terían unha carta en común, o que é imposible. Xa que logo, eses tres puntos de Boris determinan 6 rectas que conteñen a algún deles. A recta que falta é a de Audrey, polo que Boris xa pode anunciar o valor da carta do incauto Sergey.

luns, 13 de abril de 2020

O problema da persecución de Apolonio


Problema da persecución de Apolonio. Consideremos dous barcos A e B que se desprazan en liña recta e tales que a velocidade de B é k veces a de A. Trátase de que, sabendo a dirección de avance de A, o barco B o intercepte no menor tempo posible.

Para dar resposta a este problema imos trasladarnos atrás no tempo. Como case sempre sucede na xeometría plana, hai que retrotraerse ata os Elementos de Euclides (III a.C.), concretamente ao seguinte resultado:
Proposición VI.3. Se o ángulo dun triángulo se corta á metade e a recta que corta o ángulo corta tamén a base, os segmentos da base gardarán a mesma razón que os restantes lados do triángulo; e se os segmentos da base gardan a mesma razón que os restantes lados do triángulo, a recta unida dende o vértice ata o punto de corte cortará á metade o ángulo do triángulo. [ver Elementos]
A primeira implicación é tamén un dos primeiros resultados (1.33) que achamos no recomendable Geometry revisited de H. S. M. Coxeter e S. L. Greitzer, onde se demostra por medio do teorema dos senos.
Teorema 1.33. A bisectriz dun ángulo dun triángulo divide o lado oposto en dous segmentos de lonxitude proporcional á lonxitude dos lados que o forman.
Aplicando o teorema dos senos e tendo en conta que os ángulos suplementarios en M teñen o mesmo seno:
$$\frac { AM }{ sen\left( \frac { C }{ 2 }  \right)  } =\frac { b }{ senM } \\ \frac { BM }{ sen\left( \frac { C }{ 2 }  \right)  } =\frac { a }{ senM } \\ \frac { AM }{ BM } =\frac { b }{ a } $$

Parece ser que unha xeneralización deste resultado ao ángulo exterior é debida o matemático inglés Robert Simson (1687-1768). Estou a falar da seguinte proposición, que pode obterse a partir do teorema de Tales:

Teorema. A bisectriz tanto dun ángulo interior como exterior dun triángulo divide o lado oposto en segmentos proporcionais á lonxitude dos lados que o forman.
$$  \frac { AM }{ BM } =\frac { b }{ a } \quad \quad \quad  \frac { AN }{ BN } =\frac { b }{ a }$$

Agora estamos en disposición de definir a circunferencia de Apolonio do triángulo ABC para o vértice C: será aquela que pase por C, M e N. Con estes vimbios podemos, por fin, achegarnos á solución do problema. Pouco haberá que comentar se sabemos que a razón das distancias dos puntos da circunferencia de Apolonio dun vértice aos outros dous é constante, concretamente

Teorema. Sexa P un punto da circunferencia de Apolonio do vértice C dun triángulo ABC, entón
$$\frac { PA }{ PB } =\frac { b }{ a }$$

Desde B trazamos perpendiculares a PM e PN que cortan a PA en E e en F. Así podemos trazar tamén BE e BF.
Como MP ⏊ PN ⏊ BF temos tamén que MP ∥ BF. Polo teorema de Tales:
$$\frac { PA }{ PF } =\frac { AM }{ BM }=\frac { b }{ a }\quad\quad\quad[1]$$
Como EB ⏊ MP ⏊ PN temos tamén que EB ∥ PN. Polo teorema de Tales:
$$\frac { PA }{ PE } =\frac { AN }{ BN }=\frac { b }{ a }\quad\quad\quad[2]$$
Entón 
$$\frac { PA }{ PF } =\frac { PA }{ PE }\Rightarrow PF=PE$$
Como EB ∥ PN ⏊ BF entón tamén EB ⏊ BF polo que o triángulo EBF é recto en B e, xa que logo, P é o punto medio da hipotenusa polo que tamén será o circuncentro. Velaí que PF=PB
$$\frac{PA}{PB}=\frac { PA }{ PF }=\frac{PA}{PE}=\frac{b}{a}\quad\Box $$

Ademais ABMN forman unha cuaterna harmónica xa que a súa razón dobre é -1. Basta ter en conta [1] e [2] e considerar que os segmentos están orientados, isto é, que están dotados de signo
$$\left( A,B,M,N \right) =\frac { AM }{ BM } \frac { BN }{ AN } =-\frac { b }{ a } \frac { a }{ b } =-1$$
Xa que estamos metidos en fariña, lembremos as leccións de xeometría proxectiva. As proxeccións conservan a razón dobre e, en consecuencia, as razóns harmónicas tamén serán invariantes. As inversións tamén se conservan por proxeccións.
Dados A e B, supoñamos que o punto M verificando que a razón AB/AM=k está no segmento AB. A resolución do problema da persecución consistirá en obter un punto N tal que ABMN forme unha cuaterna harmónica.
Sexa O o punto medio de A e B. Trazamos a circunferencia de diámetro AB e a perpendicular a esta recta por M cortará a esa circunferencia nun punto T. A recta TN, tanxente á circunferencia, cortará á recta AB nun punto N. Como os triángulos OTM e OTN son semellantes:
$${ OT }^{ 2 }=OA\cdot OB=ON\cdot OM$$
Esta última igualdade significa que tanto A e B como M e N son inversos con respecto á circunferencia ATB. A recta MT será a polar de N na inversión respecto a esa circunferencia.
Finalmente a circunferencia de raio MN dá a solución do problema da persecución de Apolonio pois é a circunferencia de Apolonio do triángulo ABC no vértice C, onde C será o punto de interceptación buscado, obtido como intersección da circunferencia de Apolonio e a recta que marca a dirección de avance do barco A.






Problema para a ESO
Podemos adaptar o anterior enunciado a un problema escolar que sería abordable polo alumnado da ESO:
Problema da persecución de Apolonio; versión escolar. Dous barcos A e B están a unha distancia de 3 km. Desprázanse en liña recta e a velocidade de B é k veces a de A. O barco A leva unha dirección que forma un ángulo de 45º coa liña que une os dous barcos.  B vai interceptar a A no menor tempo posible, acha o punto de encontro sabendo que $$k=\sqrt { \frac { 7 }{ 8 }  } $$
Para resolvelo basta con decatarse de que as lonxitudes dos lados a e b deben estar na mesma proporción que as velocidades dos barcos. Ademais, como o ángulo é de 45º, a altura do triángulo vai ser x.
$$\sqrt { \frac { 7 }{ 8 }  } \cdot a=b\quad \quad \quad ;\quad \quad \frac { 7 }{ 8 } { a }^{ 2 }={ b }^{ 2 }$$
Entón o problema redúcese a resolver unha ecuación de segundo grao:
$$\frac { 7 }{ 8 } \left( { x }^{ 2 }+{ x }^{ 2 } \right) ={ \left( 3-x \right)  }^{ 2 }+{ x }^{ 2 }$$
O que nunca deixa de sorprenderme das matemáticas é que tanto esta resolución analítica como a xeométrica coinciden a pesar de seren desenvolvidas por métodos completamente distintos. Ante a vista de casos coma este fáiseme moi costa arriba asumir que haxa xente que non goce deste tipo de casualidades. Ninguén pode negar que as matemáticas teñen o seu aquel de fermosura.