quinta-feira, 10 de janeiro de 2019

Problemas de congruencia e semellanza

A congruencia e a semellanza de figuras planas, moi especialmente a de triángulos,  trátanse na ESO polo que poderíamos pesar (erróneamente) que son temas triviais e nos que non se pode profundizar gran cousa. Van de seguido seis problemas de enunciado ben simple:
1. Corta un cadrado en tres figuras congruentes
2. Corta un cadrado en tres figuras semellantes tales que dúas delas sexan congruentes.
3. Corta un cadrado en tres figuras semellantes tales que non haxa dúas congruentes.
4. Corta un triángulo equilátero en tres figuras congruentes.
5. Corta un triángulo equilátero en tres figuras semellantes tales que dúas delas sexan congruentes.
6. Corta un triángulo equilátero en tres figuras semellantes tales que non haxa dúas congruentes.

Estas cuestións teñen a característica de seren moi abertas e, aínda que teñen un enunciado moi semellante (que non congruente), son de dificultade moi diversa: unha desas particularidades marabillosas nada infrecuentes nas matemáticas. Tamén dan lugar a outras cuestións tales como a existencia, unicidade ou contabilización das solucións de cada un deles. Os enunciados incluso invitan a continuar a serie partindo dun polígono regular calquera ou facendo divisións cun maior número de pezas.
Portada de Quantum
Por último toca explicar de onde saquei os enunciados. Antes de nada aviso que o artigo ofrece solucións ás cuestións, polo que é recomendable darlle algunhas voltas antes de consultalo. Trátase dunha colaboración de Martin Gardner (1914-2010) publicada no número de maio/xuño de 1994 da revista Quantum.
Quantum, editada pola National Science Teachers Association entre os anos 1990 e 2001 foi unha revista de ciencia dirixida tanto ao alumnado de secundaria e universitario como ao profesorado. As súas orixes remóntanse a outra publicación, neste caso rusa, Kvant, que tivo entre os seus fundadores ao destacado matemático Adrei Nikolaevich Kolmogorov (1903-1987). Kvant aínda se publica na actualidade. Se a consultamos, de certo que nos dará mágoa non saber ler os caracteres cirílicos.

sexta-feira, 21 de dezembro de 2018

O cartel da Olimpíada Matemática Galega 2018 (e 2)


Cartel da Olimpíada Matemática Galega 2018

A anterior entrada, coma esta, estaba inspirada no cartel da Olimpíada Matemática Galega 2018. Alí consideramos a demostración euclidiana do teorema de Pitágoras, tamén fixemos referencia a determinadas xeneralizacións do resultado pitagórico e a outros resultados que gardan algunha relación coa chamada configuración de Vecte tales como o coñecido teorema de Napoleón ou o menos coñecido teorema de Finsler-Hadwiger.







Triángulos coa mesma área
Daquela rematabamos cunha cuestión que paso a repetir aquí. Consideremos unha configuración de Vecten construída a partir dun triángulo calquera. Xa comentaramos a demostración visual de Steven L. Snover sobre a igualdade das áreas dos triángulos que se forman ao unir os vértices dos cadrados levantados sobre o triángulo de partida.
Se continuamos levantando cadrados sobre esta configuración iremos construíndo a figura que ilustra o cartel da Olimpíada Matemática Galega 2018. Resulta que estes cadrados comenzan a delimitar trapecios. Que podemos afirmar sobre eles? Os tres trapecios que se forman  terán tamén a mesma área? No caso de ser a mesma, terá algunha relación coa do triángulo orixinal?




Trapecios na configuración de Vecten
Máis preguntas. Se continuamos levantando cadrados sobre a configuración volverán a aparecernos máis trapecios. Podemos determinar a súa área e relacionala co triángulo de partida? Eses novos tres trapecios terán a mesma área? E os trapecios do seguinte levantamento, terán algunha relación cos do paso anterior. En caso afirmativo, cal será?
Se algunha vez liches algún texto de Adrián Paenza, saberías que neste momento, despois de establecer as cuestións,  recomendaríche que gozases coa abordaxe do problema. Non sigas lendo. Pénsao durante uns momentos. Adícalle o tempo necesario antes de seguir facendo scroll...

Si, alá no fondo está o triángulo, onde comenzou todo

Para ver algunhas respostas ás que cheguei bastará con mirar o seguinte applet de geogebra, aínda que para saber de que vai cómpre seguir algunhas instrucións. Seguramente se podería construír outro mellor elaborado pero para comunicar algunhas ideas poida que serva.
Instrucións para manexar a applet:
Paso 0.Podes modificar o triángulo a partir dos seus vértices. Vai ao paso 1.
Paso 1.Move o esvarador azul e comproba o que pasa
Paso 2.Aparecerá un esvarador laranxa. Móveo e volve a observar.
Paso 3. Fíxate no valor do esvarador laranxa. Aparecerá outro esvarador azul. Conviña que afastaras algo a imaxe co Zoom (última das ferramentas; pódese usar o botón do rato) e quizais que a centraras. Vai ao paso 1.
Mágoa que no applet só aparezan un pequeno número de pasos.
Unha pregunta máis: quen vén sendo ese punto gris no interior do triángulo?




Pon unha homotecia na  túa vida.
Un dos aspectos que nunca tratei en ningunha aula, nin como docente nin como alumno, curiosamente aparecía nun dos temas das oposicións. Estou a falar das homotecias. Quen me ía dicir que me servirían de axuda neste problema!
Baricentro trisecando un triángulo
As tres medianas dividen a un triángulo T0 calquera en 6 trianguliños coa mesma área (t0/6). En particular, os segmentos que unen os vértices co baricentro trisecan a área do triángulo noutros 3 triángulos: X0, Y0 e Z0

Por outra banda, se aplicamos sotre o triángulo T0 unha homotecia desde o seu baricentro obteremos triángulos semellantes a T0 e co mesmo baricentro.
As áreas dos trapecios son iguais
Na configuración de Vecten denominarei Xn, Yn e Zn aos trapecios levantados despois de n pasos. Podemos ver, por exemplo, que X1, Y1 e Z1 completan o triángulo inicial T0 determinando así un novo triángulo T1 mediante unha homotecia de razón 4 centrada no baricentro común. X2, Y2 e Z2 volven a facer o mesmo sobre T1, agora cunha homotecia de razón 19; e así sucesivamente.

Mediante homotecias centradas no baricentro expandimos o triángulo inicial
Usarei o signo "+"co significado de unión disxunta. Como X0 (respectivamente Y0 e Z0) é a terceira parte de T0, X0+X1 tamén é un terzo de T1. De aí que se verifique a igualdade X1=Y1=Z1 e, en xeral, por indución, Xn=Yn=Zn. Ou dito máis literiamente: os 3 trapecios que levantamos en cada paso da configuración de Vecten teñen a mesma área.
As homotecias que nos dan os novos triángulos T1, T2, T3, T4 son de razóns:
ho=1           h1=4            h2=19           h3=91               h4=436
Quizais incluso non cómpre acudir ao portal de referencia das sucesións para ver que ésta é A004253,  isto é,  a que vén dada pola lei:
ho=1           h1=4             hn=5・hn-1-hn-2 

Todo o anterior permítenos determinar a área dos trapecios (os corchetes indican a área da figura, así [T0 ] será a área do triángulo T0):
$$3{ [X }_{ 1 }]+{ t }_{ 0 }={ h }_{ 1 }^{ 2 }{ [T }_{ 0 }]$$
$${ [X }_{ 1 }]=\frac { \left( { h }_{ 1 }^{ 2 }-1 \right) { [T }_{ 0' }] }{ 3 } =5[{ T }_{ 0 }]$$
E en xeral: $${ [X }_{ n }]=\frac { \left( { h }_{ n }^{ 2 }-{ h }_{ n }^{ 2 } \right) { [T }_{ 0 }] }{ 3 } $$

Máis trapecios, máis preguntas
Acabouse? Afortunadamente as ciencias, en particular as matemáticas, nunca se esgotan. Cada problema resolto é fonte da que beben novas cuestións.
Ao repasarmos o que estiven chamando configuración de Vecten, isto é ao levantamento reiterado de cadrados sobre un triángulo calquera, ademais dos trapecios Xn, Yn e Zn , que son os que aparecen marcados en azul na seguinte imaxe, quedan entre medias outros trapecios como os marcados en vermello. Volven a xurdir as mesmas preguntas que se propoñían antes: cada un destes grupos estará formado por tres trapecios coa mesma área? terán algunha relación coa área do triángulo inicial, e coa área dos trapecios azuis? Intrigantes cuestións.


Hai trapecios azuis e trapecios vermellos

segunda-feira, 17 de dezembro de 2018

O cartel da Olimpíada Matemática Galega 2018.1

Cartel da Olimpíada Matemática Galega 2018
Unha proba do atrasadas que van as entradas neste blogue é esta mesma entrada. Basta decatarse de que o tema do que trata ten data e comparala coa data da publicación da entrada para mostrar que necesitaría moito máis tempo para manter o blogue máis actulizado. Pero non lle deamos máis voltas, este que presento aquí, foi o cartel da Olimpíada Matemática Galega 2018. Se o observamos con algo de vagar veremos unhas fórmulas na parte superior. Son as que reproduzo de seguido: $${ A }_{ 1 }+{ B }_{ 1 }={ C }_{ 1 }\\ { A }_{ 2 }+{ B }_{ 2 }=5{ C }_{ 2 }\\ { A }_{ 3 }+{ B }_{ 3 }={ C }_{ 3 }\\ { A }_{ 4 }+{ B }_{ 4 }=5{ C }_{ 4 }\\ { A }_{ 5 }+{ B }_{ 5 }={ C }_{ 5 }$$
Partindo de que o triángulo laranxa do cartel é un triángulo rectángulo, a primeira igualdade é o teorema de Pitágoras. Pero, e as outras?
Pois ben, non cómpre ser moi espelido, nin precisamos consultar esta anotación para pensar, que de seren certas estas fórmulas, conviría estudar o caso xeneralizado:
$${ A }_{ 2n+1 }+{ B }_{ 2n+1 }={ C }_{ 2n+1 }\\ { A }_{ 2n }+{ B }_{ 2n }={ C }_{ 2n }$$

A cadeira da noiva ou a configuración de Vecten

Sacado de aquí
A configuración xeométrica que anuncia a olimpíada 2018 pode comenzar a construirse a partir da que utilizou Euclides para a súa demostración do teorema de Pitágoras, nomeada por algúns como cadeira da noiva. Aínda que, segundo o especialista en historia da ciencia Florian Cajori, esta denominación débese a unha confusión nunha tradución do século XIII entre "noiva" e "insecto alado". Ben certo que neste esquema é que é moito máis doado de ver un cabaliño do demo que unha noiva.
A configuración que presentamos no gif dá para moito. Por exemplo, se substituímos os cadrados por triángulos equiláteros, é inmediato demostrar que a área do construído sobre a hipotenusa igual á suma dos levantados sobre os catetos. A mesma relación teriamos se no canto de cadrados ou triángulos colocamos calquera polígono regular, ou incluso semicírculos, ou rectángulos semellantes,... ou en xeral figuras semellantes.
A pesar de ser un resultado clásico, coñecido por Hipócrates de Quíos (V a.C.), ou de ser un dos resultados máis destacables dos Elementos (proposición VI.31), lembro perfectamente que non souben del ata un par de anos despois de rematar a carreira (ben, confesemos todo, en realidade non coñecía prácticamente ningún resultado de xeometría sintética)
Insistindo na figura anterior, consideremos un dos pasos que máis agradan aos que remexen nas matemáticas. No canto dun triángulo rectángulo poñamos un triángulo calquera, e sobre os seus lados construímos cadrados. Os segmentos FC e KB seguirán cortándose nun punto da altura AL? A resposta é afirmativa.


Figura 1
Consideremos agora os centros dos triángulos. Se os unimos respectivamente cos vértices opostos do triángulo, estes tres segmentos coinciden nun punto denominado punto de Vecten.
Un pode pasar varias xornadas dándolle voltas a estas ideas, remexendo nas propiedades de distintos puntos e segmentos que participan na construción dos puntos de Vecten. Unha forma de xogar con elas consiste en considerar o  punto de Vecten interior, aquel que se forma do mesmo xeito pero a partir dos dos cadrados construídos "cara adentro", solapando o triángulo.
Sen desviarnos do primeiro camiño, considerando a figura 1 sobre a que construímos o punto de Vecten orixinal (exterior), achegaremos unha propiedade ben curiosa:










Figura 2


Propiedade. Os segmentos que unen os centros dos cadrados OB e OC co punto medio MA do lado BC  do triángulo son perpendiculares.

















O resultado anterior ten como consecuencia case inmediata o Teorema de Finsler-Hadwiger, do que xa falamos noutra ocasión
Figura 3

(Teorema de Finsler-Hadwiger). Dados dous cadrados OABC e OA'B'C' cun vértice común O, os puntos medios dos segmentos AA' e CC' xunto cos centros dos cadrados forman tamén un cadrado (isto é: WXYZ é un cadrado)














Figura 4
Sen deixar atrás a figura de Vecten, se no canto de cadrados sobre os lados do triángulo orixinal, construímos triángulos equiláteros, achegarémonos ao coñecido Teorema de Napoleón

(Teorema de Napoleón). Dado un triángulo calquera, se sobre os seus lados levantamos triángulos equiláteros, os seus centros determinan outro triángulo equilátero. 

(NOTA: nun triángulo equilátero podemos falar de centro porque coinciden ortocentro, baricentro, incentro e circuncentro. Por esta razón nun triángulo equilátero podemos falar de centro a secas.)








Atrevámonos a dar un paso máis ampliando a configuración de Vecten cos triángulos que se forman ao unir os vértices dos cadrados. Resulta que estes novos triángulos teñen todos a mesma área, e que ésta coincide co triángulo laranxa de partida. Non é difícil demostralo facendo uso do teorema do coseno, e así llo teño proposto nalgunha aula de 1º de bacharelato, mais non sei se volverei a facelo porque hai unha demostración disto moito máis sinxela, e por outra banda, máis xeral, debida a Steven L. Snover. En primeiro lugar, o triángulo de partida non ten por que ser rectángulo. Ademais non cómpre realizar ningunha operación debido á impediatez da proba visual.
Consideremos un dos triángulos, rotémolo 90º en dirección contraria ás agullas dun reloxo. Que obtivemos?:




Pois si, obtivemos dous triángulos coa mesma base a . Ademais estas bases descansan sobre a mesma recta polo que temén é evidente que teñen a mesma altura, ergo a mesma área.

E se imos máis alá?
Configuración de Vecten
Se continuamos abrindo o foco aparecerán tres trapecios. Terán os tres a mesma área? En todo caso, pódese calcular a área deses trapecios? Terán algunha relación coa do triángulo? Dependerá do tipo de triángulo, por exemplo se é rectángulo?
Pode que nunha seguinte entrada trate este tema.
Mentres deixo tempo para abordar a cuestión dos trapecios,  partillo o seguinte vídeo, que a pesar de ser elaborado con fins crematísticos, é tamén unha peza divulgativa moi ben feitiña que remexe no teorema de Pitágoras pero que comenta resultados que van máis alá.

quinta-feira, 22 de novembro de 2018

Isto son matemáticas (en galego)

Isto son matemáticas
no IES Antón Losada
Tal e como se anunciaba nunha entrada anterior, no IES Antón Losada programouse unha extensa cantidade de actividades reivindicando a ciencia en galego. Unha delas consistiu na presentación por parte de alumnos de 1º de bacharalato, de seis temas de corte matemático a alumnos de 2º da ESO.

Os primeiros en ofrecer o seu relato foron Ibai Fernández e Samuel Martíns, que baixo o título "O número de Deus" explicaron como facer o reconto de posibles configuracións dun Cubo de Rubik, resolveron un en directo e, como non!, falaron do curioso número de Deus. Uxía Rodríguez e Andrea Porto abordaron distintos crebacabezas xeométricos nos que cunhas poucas pezas simples, ao estilo Tangram, podemos formar distintas figuras xeométricas de distintas áreas... a pesar de que usamos as mesmas pezas!

 

Laura Picallos e Carla Villaverde abordaron a cuestión de "Para que serven os polinomios?" Para iso presentaron o seguinte xogo do Proxecto ed@ad   no que se trata de adiviñar unha das 32 figuras por medio de 5 preguntas de resposta si/non. Entón desviaron a cuestión ás notacións decimal e binaria dos números. A representación dos números en calquera base faise mediante unha estrutura polinómica. Precisamente, estudando o sistema binario podemos desvelar o segredo deste xogo. Como en moitas ocasións, a esencia da resposta está no coñecemento dos polinomios.

Facendo uso da técnica anterior, pero implicando agora o control das ordenacións ao barallar as cartas, Julio Tarrío e Andrea Fraiz fixeron un espectacular truco de cartas matemático.

Falando de xogos, coñecedes o xogo do nim? Dada unha disposición en filas de 1-3-5-7 paus, cada xogador (son 2) retira por quendas a cantidade de paus que queira de cada fila. Perde o que se vexa obrigado a retirar o derradeiro pau.
Pablo Pena e Mauro Moimenta non só xogaron e explicaron en que consiste, senón que, facendo uso da descomposición de calquera número como suma de potencias de dous, deron conta dunha estratexia gañadora. Ademais esa estratexia podían aplicala a calquera outra disposición de paus en filas. En particular, serviría para xogar con filas de 1-2-4-7-8 paus en cada unha.


O xogo do calendario
Finalmente Seraina Barros e Iria Ferreiro presentaron outro xogo, o "Xogo do calendario". Tomaron como punto de partida o calendario que fixera o Equipo de Normalización a comenzos de curso. Poderían ter collido outro mes pero escolleron o mes de maio por ser cando se celebra o Día das Letras. Nel recortaron unha matriz de 4x4 números e mediante un proceso consistente en escoller un número e despois tachar o resto dos números da fila e a columna no que está o elixido para pasar despois a escoller outro número non tachado, foron guiando aos alumnos de 2º da ESO para que fixeran o mesmo. A pesar de que tiñan todos táboas diferentes, de que cada un escolleu os números como lle petou, e, en definitiva, de que cada un dos presentes tiña unha colección de 4 números distinta, ao final por esas cousas misteriosas que teñen as matemáticas, a suma deses grupos de 4 números escollidos por todos e cada un dos asistentes coincidía!

 

Cando andaba na procura de temas para que o alumnado preparara para expoñer, atopei varios xogos que tiñan que ver cos calendarios.  Non me acababa de gustar ningún, ata que remexendo neles lembrei un que me encantara e que presentara Coque nun congreso de Agapema, así que, dalgunha maneira en homenaxe a el foi o que lle propuxen aos alumnos para que o levaran a cabo. Paso a explicar os seus fundamentos.
Se recortamos unha matriz 4x4 nun calendario (cando isto é posible), e o primeiro número é a, o resto da matriz distribuirase da seguinte maneira: $$\begin{matrix} a & a+1 & a+2 & a+3 \\ a+7 & a+8 & a+9 & a+10 \\ a+14 & a+15 & a+16 & a+17 \\ a+21 & a+22 & a+23 & a+24 \end{matrix}$$
(Nota: quen queira pode pensar en escoller unha matriz 3x3 e ver o que sucede nese caso). Polo procedemento indicado máis arriba (escoller un número, tachar fila e columna, escoller número non tachado, tachar fila e columna....) determínanse 4 números que sumarán o mesmo que os 4 da diagonal principal: 4・a + 48. Na escolla que fixeron Iria e Seraina: 4・7 + 48 = 76.
Finalmente, elaborar matrices que den lugar a esas cifras non é nada complicado. Basta considerar a seguinte matriz $$\begin{matrix} a & a+k & a+2k & a+3k \\ b & b+k & b+2k & b+3k \\ c & c+k & c+2k & c+3k \\ d & d+2k & d+3k & d+4k \end{matrix}$$ Dándolle valores a catro das variables en xogo, por exemplo ás variables k, a, b e c, podemos deducir o valor de
 d=76 ㄧa ㄧbㄧcㄧ6k.

quarta-feira, 14 de novembro de 2018

Matemáticas: habelas, hainas

Desde o ano pasado a Facultade de Matemáticas da USC , o IMAT e a CNL organizan unha xornada de carácter divulgativo sobre investigación en matemáticas. As charlas, de menos de 20 minutos, presentan diversos usos das matemáticas dun xeito desenfadado e sinxelo.  Isto é certo ata o punto de que os vídeos ben poderían ser unha gorentosa fonte de recursos para o ensino secundario.
Un obxectivo destacable detas xornadas é que procura familiarizar aos participantes no uso do galego para a presentación das investigacións ao público non especialista. Coincidindo coas celebracións en novembro da Ciencia en Galego e como sinalan os promotores desta proposta, a intención é normalizar o uso do galego nas matemáticas deixando de lado prexuízos lingüísticos. 
Podemos acceder aos relatorios destas xornadas en vídeos aloxados nunha plataforma propia da USC. Se por unha banda este formato permite alternar entre a visualización da presentación e a do relator, pola outra é unha mágoa que non permita unha maior divulgación destas charlas.


Matemáticas: habelas, hainas, queremos contarchas!
Xornada celebrada o 9/11/17
Matemáticas: habelas hainas, seguimos contándochas!
Xornada celebrada o 7/11/18

segunda-feira, 29 de outubro de 2018

O último rechío da politica lingüística

De contemplarmos esta foto sen máis información só veremos catro persoas posando. Se nos proe algo a curiosidade e prememos na ligazón que nos ofrece o chío, quedarémonos con que Valentín García participou na entrega de premios do concurso "Explícoche matemáticas 2.0".  Neste caso pensariamos que temos a información completa cando o certo é que nese intre saberemos menos que antes. Para explicar a foto cómpre relatar algunhas das febras historia de como se chega ata ela.
Unha desas febras comenza cando as ansias de galego desta terra levaron a que un grupo de usuarios se organizase para proporcionarnos unha versión do Twitter en galego. Un goberno da Xunta que leva o vergoñento carimbo de ser unha peste para a lingua galega, quixo apropiarse o traballo de todos eses usuarios para venderse perante a opinión pública como a peza fundamental da galeguización da rede social despois de actuar con completo desinterese pola cuestión.
Como é habitual nos procesos de implantación dun novo vocabulario, naquel traballo comunitario de de galeguización do Twitter houbo vacilacións. Como designar o vocablos "tweet" e "retweet"? Algúns avogaban por empegar directamente a versión orixinal en ingles, porén a opción que comenzou a usarse nun principio foi a de "chío" e "rechío".
Con moito acerto, unha intervención do Portal das Palabras avisaba da existencia de "rechío" con outra acepción: "son áspero e desagradable que produce unha cousa dura ao rozar". Aqueles que habilitaramos o noso Twitter en galego non tardamos en ver como a tradución de "retweet" pasaba a ser "rechouchío", ampliándose así os chíos e rechouchíos dos xílgaros e reiseñores a todos os usuarios da rede social.
Outra das febras da prehistoria da foto é máis coñecida aínda que non se ten o suficientemente presente. No 2004 publícase baixo o paraugas do consenso o Plan Xeral de Normalización Lingüística (PXNL), un documento con 445 medidas que marcaban as directrices da política lingüística para os seguintes anos. No 2007 ponse en funcioknamento o decreto para a promoción da lingua galega para o ensino non universitario seguindo estritamente as directrices do PXNL, entre elas a 2.1.26 e a 2.1.27 que recomendaban que as matemáticas (e a tecnoloxía) figurasen entre as materias a impartir en galego. Contra todo acordo previo os gobernos dirixidos por Feijóo prohibiron a partir do ano 2010 tanto a docencia como a publicación de materiais didácticos en galego para as materias científicas. Coa aprobación da LOMCE increméntanse o número de clases de matemáticas, e polo tanto de exclusión da lingua galega no ensino non universitario. A partir do ano 2018 a Consellería de Educación comenza unha campaña de promoción das STEM, onde o galego está vetado, co que indirectamente se reforza a súa discriminación oficial.
Agora, que temos presente toda a información, volvamos a mirar a foto. Por unha banda está o secretario xeral de política lingüística, responsable último de prohibir tanto a impartición de aulas de matemáticas en galego como o uso de material didáctico desta materia nesa lingua. Pola outra dúas mozas que acaban de recibir de mans dese secretario xeral un premio por elaborar material didáctico de matemáticas en galego. Velaí o último rechío, ata o día de hoxe, da política lingüística que nos tocou padecer. Haberá máis.