sábado, 6 de julho de 2019

Os secretos matemáticos do triángulo de Pascal


Velaquí o famoso vídeo de TEDed sobre o triángulo de Pascal con subtítulos en galego. A cousa empezou nos XXI Encontros para a normalización lingüística organizados polo Consello da Cultura Galega. Alí Xusto Rodríguez explicou como funcionaba o proxecto de tradución de vídeos TED.
O proceso de aprendizaxe de uso da plataforma de tradución é simple. Basta con seguir os pasos indicados nesta serie de vídeos.
A ventaxa principal deste tipo de traballo, penso eu, é a simplicidade de todo o proceso. O peor é que para que se publique unha tradución é que hai que agardar a que outro tradutor, nun principio máis experto, che revise o traballo e non sempre vai haber alguén do outro lado da arañeira de internet mirando a ver o que fas. Cumpriría ter un grupo de traballo organizado para sacar adiante tanto as traducións feitas e sen publicar, como as que vaian chegando. Unha dificultade engadida, segundo me pareceu ver, é que na primeira tradución gozas dunha serie de ventaxas que xa non se dan nas seguintes (agás que soltes a xarda). Ademais de facer a tradución, hai que colocar cada secuencia dentro dun intervalo de tempo. A primeira vez podes usar a temporalización doutro idioma. Non poder seguir facéndoo nas seguintes é unha carga de traballo engadida, e non pequena. Con todo, no momento da publiación desta entrada, xa hai unhas 300 traducións ao galego.

quarta-feira, 3 de julho de 2019

Como Euler arranxou un desarranxo

Problema 1.Un grupo de 14 profesores dun claustro escolar celebra unha comida para celebrar a finalización da avaliación. Para armar festa alguén propuxera facer un amigo invible. Cada un levaría un pequeno agasallo que se sortearía durante a celebración. Alguén comenta: "é ben seguro que algún vai levar o regalo que el mesmo comprou". Velaquí un problema matemático: cal é a probabilidade de que haxa algúen a quen lle toque o seu propio agasallo?
Sabía que coñecía o problema, só que tiña outro enunciado, aínda que cunha redacción referida a unha realidade doutra época:
Problema 2. O encargado do gardarroupa dun establecemento esqueceuse de etiquetar os sombreiros dos clientes e decide devolvelos ao chou. Cal é a probabilidade de que polo menos unha persoa reciba o seu sombreiro?
Ou incluso este outro, que fai referencia a cando aínda se escribían cartas:
Problema 3. Un encargado debe enviar n cartas a n direccións diferentes. Como é pouco responsable co seu traballo, introduce as cartas nos sobres ao azar. Achar a probabilidade de que introducira algunha carta no sobre correspondente.
A seguinte, e última versión, recibiu o nome do xogo do recontre
Problema 4. Dúas persoas, A e B, cunha baralla completa cada unha, sacan a un tempo cada súa carta. Se extraen a mesma carta gana A. Se  repiten a operación ata esgotar todas as cartas e nunca coinciden, ganará B. Pídese a probabilidade de que gane cada un dos xogadores.
Esta última versión foi proposta por Pierre Rémond de Montmort (1678-1719)  nun ensaio publicado no 1708. Na segunda edición desta obra (1713) resolve algúns casos simples pero queda sen dar unha solución xeral. Un dos que se enfrontaría á cuestión sería Leonhard Euler no seu  Calcul de la probabilité dans le jeu de rencontre (1743). De seguido vou debullar esta resolución porque é un exemplo maxistral de como abordar un problema. En primeiro lugar profundiza sobre el, estuda varios casos ata familiarizarse con el. Cando non pode seguir traballando caso a caso busca unha propiedade que lle permita domesticalo e preparar así o asalto final. Vou seguir os pasos de Euler aínda que o farei usando unha notación distinta. Se o fago así non é por capricho, senón que despois de ler a súa resolución, vin que a entendía mellor facendo uso deste anacronismo. Polo demais, no esencial, reproducirei con toda fidelidade o seu razoamento.
A versión sobre a que traballa Euler é a dun xogo de cartas na que dúas persoas A e B, con cada seu mazo completo de cartas, van sacándoas de unha en unha. Se nalgún momento sacan os dous a mesma carta gañará A. Se, pola contra, ningún par de cartas é coincidente, gañará B. Trátase de calcular a probabilidade de que gañe cada un deles.

No canto de cartas imos falar de números e no canto de considerar únicamente o caso das 52 cartas dunha baralla francesa, trataremos o problema xeral de n cartas.
En primeiro lugar, sen perda de xeneralidade, podemos supoñer que un dos xogadores (consideremos que sexa o xogador A) ten ordenadas todas as súas cartas en orde crecente: 1, 2, 3,....,n. Agora o problema consistirá en contabilizar o número de permutacións nas que ningún elemento coincida con esta dada. Este tipo de reconto é hoxe coñecido como desarranxo.
Fago aquí unha paréntese terminolóxica. Escollín o termo desarranxo por varias razóns. En primeiro lugar xa temos en galego outro termo para referirnos a outro reconto combinatorio: arranxo
(os arranxos de n elementos tomados de m en m consisten en todos os subconxuntos ordenados de m elementos que podemos formar nun conxunto de n elementos, con m ≤ n). En segundo lugar, a denominación en inglés é derangement, en francés dérangement e en portugués, desaranjo. En español só achei que para referirse á contabilización dos desarranxos, que se fai mediante a función subfactorial. Nesta lingua hai quen usa o termo desarreglo.

Volvamos á análise de Euler. Consideremos os primeiros casos.
Se n=1, gaña A
Se n =2, hai dúas posibilidades de extracción: (1,2) gañando A, e (2,1) gañando B.
Se n = 3 Euler fai a seguinte táboa con todas as posibilidades:
Táboa para n=3
Onde coa columna da esquerda indicamos as cartas de A, mentres que as columnas numeradas refírense a todas as posbiles xogadas de B.
Se denominamos $${ A }_{ n }^{ k }=no\quad xogo\quad con\quad n\quad cartas\quad A\quad gaña\quad coa\quad carta\quad k$$
 $${ A }_{ n }=no\quad xogo\quad con\quad n\quad cartas\quad A\quad gaña\quad (con \quad algunha \quad carta)$$
Podemos contabilizar o número de veces que gaña A e en que extracción. A gañará na primeira extracción nos casos 1 e 2 (ver táboa anterior), gañará na segunda extracción no caso 5 e na terceira extracción no caso 3.
$$P\left( { A }_{ 3 }^{ 1 } \right) =\frac { 2 }{ 6 } \quad\quad         P\left( { A }_{ 3 }^{ 2 } \right) =\frac { 1 }{ 6 }    \quad\quad            P\left( { A }_{ 3 }^{ 3 } \right) =\frac { 1 }{ 6 } $$
$$P\left( { A }_{ 3 } \right) =\frac { 4 }{ 6 } $$ 
Para n=4:
Táboa para n=4
A gaña na primeira extración nos 6 primeiros casos
A gaña na segunda extracción nos casos 17, 18, 21 e 22.
A gaña na terceira extracción nos casos 10, 12 e 21
A gaña na cuarta extracción nos casos 8 e 15
$$P\left( { A }_{ 4 }^{ 1 } \right) =\frac { 6 }{ 24 } \quad\quad         P\left( { A }_{ 4 }^{ 2 } \right) =\frac { 4 }{ 24 }    \quad\quad            P\left( { A }_{ 4 }^{ 3 } \right) =\frac { 3 }{24 } \quad\quad            P\left( { A }_{ 4 }^{ 4 } \right) =\frac { 2 }{24 }$$
$$P\left( { A }_{ 4 } \right) =\frac { 15 }{ 24 } $$
Para n = 5 teremos un total de 5! = 120 permutacións. Moi difícil de abarcar. Pasemos a profundizar nos casos estudados e intentemos xeneralizar o que xa coñecemos. Por exemplo, con 4 cartas temos 4! ordenacións distintas. Delas danse 6 coincidencias na primeira extracción. Se non rematara o xogo coa primeira coincidencia tamén teriamos 6 coincidencias en cada unha das outras extraccións. Por exemplo na segunda vémola na táboa nos casos 1, 2, 17, 18, 21 e 22. Está claro que en xeral, para n cartas haberá (n-1)! coincidencias en calquera das extraccións . Isto permitiríanos a seguinte notación:
$${ a }_{ n }^{ k }=nº\quad de\quad éxitos\quad de\quad A\quad na\quad k-ésima\quad extracción\quad con\quad n\quad cartas\\ { a }_{ n }^{ 1 }=(n-1)!$$
Deamos un paso máis. Sabemos que na segunda extracción A gaña menos que (n-1)! veces pois hai que restarlle algunha das veces que gañou coa primeira. No caso das 4 cartas, das 6 coincidencias temos que restar dúas: as correspondentes aos casos 1 e 2.
E que pasaría na terceira extracción? Aquí é onde agroma a xenialidade de Euler que desbloquea as dificultades e abre unha vía para abordar  o problema. Euler propón eliminar as cartas coincidentes nesa extracción nos dous mazos e pasa a contabilizar o resultado despois desta simplificación. Sabemos que hai 6 coincidencias na terceira fila (as correspondentes ás columnas 1, 6, 10, 12, 20 e 21). Eliminemos precisamente o 3 destes casos e quédanos:

táboa para n=3 (non é erro, compara coa de máis arriba)

Que son precisamente os 6 casos para n=3. Pero o problema de determinar en cantos casos gaña A na terceira extracción xa o resolvimos máis arriba. Sabemos que das 6 coincidencias da terceira fila debemos restar 2 da primeira e unha da segunda. Quédannos 3 vitorias para A.
En xeral, con n cartas,  para determinar o número de éxitos de A na k-ésima extracción, debemos suprimir as cartas nas que se produce esa k-ésima coincidencia polo que nos quedan n-1 cartas e un total de (n-1)! casos dos que debemos restar aqueles nos que houbo unha coincidencia das k-1 primeiras extraccións. Todo isto podemos expresalo con fórmulas; farémolo para o caso de termos n+1 cartas.
$${ a }_{ n+1 }^{ 1 }=n!\\ { a }_{ n+1 }^{ 2 }=n!-{ a }_{ n }^{ 1 }\\ { a }_{ n+1 }^{ 3 }=n!-{ a }_{ n }^{ 1 }-{ a }_{ n }^{ 2 }={ a }_{ n+1 }^{ 2 }-{ a }_{ n }^{ 2 }\\ ....\\ { a }_{ n+1 }^{ k+1 }=n!-{ a }_{ n }^{ 1 }-{ a }_{ n }^{ 2 }-....-{ a }_{ n }^{ k }={ a }_{ n+1 }^{ k }-{ a }_{ n }^{ k }$$
Con estes resultados no peto podemos poñernos a calcular os valores dos primeiros casos:
$${ Para\quad n=1:\quad a }_{ 1 }^{ 1 }=1\\ { Para\quad n=2:\quad a }_{ 2 }^{ 1 }=1!=1\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad { \quad \quad \quad a }_{ 2 }^{ 2 }={ a }_{ 2 }^{ 1 }-{ a }_{ 1 }^{ 1 }=1-1=0\\ { Para\quad n=3:\quad a }_{ 3 }^{ 1 }=2!=2\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { a }_{ 3 }^{ 2 }={ a }_{ 3 }^{ 1 }-{ a }_{ 2 }^{ 1 }=2-1=1\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { \quad a }_{ 3 }^{ 3 }={ a }_{ 3 }^{ 2 }-{ a }_{ 2 }^{ 2 }=1-0=1\\ Para\quad n=4:\quad { a }_{ 4 }^{ 1 }=3!=6\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { \quad a }_{ 4 }^{ 2 }={ a }_{ 4 }^{ 1 }-{ a }_{ 3 }^{ 1 }=6-2=4\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { a }_{ 4 }^{ 3 }={ a }_{ 4 }^{ 2 }-{ a }_{ 3 }^{ 2 }=4-1=3\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad { a }_{ 4 }^{ 4 }={ a }_{ 4 }^{ 3 }-{ a }_{ 3 }^{ 3 }=3-1=2$$
Euler, incansable, continúa e ofrece todos estes valores:
nº de éxitos de A en cada extracción
Chegou o momento de calcular as probabilidades. Agora contamos co coñecemento suficiente para abordar o ataque final ao problema.

$$P\left( { A }_{ n }^{ k } \right) =\frac { { a }_{ n }^{ k } }{ n! } \quad \quad \quad P\left( { A }_{ n-1 }^{ k } \right) =\frac { { a }_{ n }^{ k } }{ \left( n-1 \right) ! } \\ P\left( { A }_{ n }^{ k+1 } \right) =\frac { { a }_{ n }^{ k+1 } }{ n! } =\frac { { a }_{ n }^{ k }-{ a }_{ n-1 }^{ k } }{ n! } =\frac { { a }_{ n }^{ k } }{ n! } -\frac { { a }_{ n-1 }^{ k } }{ \left( n-1 \right) !\cdot n } =P\left( { A }_{ n }^{ k } \right) -\frac { P\left( { A }_{ n-1 }^{ k } \right) }{ n } \quad \quad \quad [1]$$
Agora podemos calcular as probabilidades de que, con n cartas, A gane na k-ésima extracción:



$$P\left( { A }_{ n }^{ 1 } \right) =\frac { { a }_{ n }^{ 1 } }{ n! } =\frac { \left( n-1 \right) ! }{ n! } =\quad \frac { 1 }{ n } \quad \quad \\ P\left( { A }_{ n }^{ 2 } \right) =P\left( { A }_{ n }^{ 1 } \right) -\frac { P\left( { A }_{ n-1 }^{ 1 } \right)  }{ n } =\frac { 1 }{ n } -\frac { 1 }{ n\left( n-1 \right)  } \\ P\left( { A }_{ n }^{ 3 } \right) =P\left( { A }_{ n }^{ 2 } \right) -\frac { P\left( { A }_{ n-1 }^{ 2 } \right)  }{ n } =\frac { 1 }{ n } -\frac { 1 }{ n\left( n-1 \right)  } -\frac { 1 }{ n } \left( \frac { 1 }{ n-1 } -\frac { 1 }{ \left( n-1 \right) \left( n-2 \right)  }  \right) =\\ =\frac { 1 }{ n } -\frac { 2 }{ n\left( n-1 \right)  } +\frac { 1 }{ n\left( n-1 \right) \left( n-2 \right)  } \\ P\left( { A }_{ n }^{ 4 } \right) =P\left( { A }_{ n }^{ 3 } \right) -\frac { P\left( { A }_{ n-1 }^{ 3 } \right)  }{ n } =\\ =\frac { 1 }{ n } -\frac { 2 }{ n\left( n-1 \right)  } +\frac { 1 }{ n\left( n-1 \right) \left( n-2 \right)  } -\frac { 1 }{ n } \left( \frac { 1 }{ n-1 } -\frac { 2 }{ \left( n-1 \right) \left( n-2 \right)  } +\frac { 1 }{ \left( n-1 \right) \left( n-2 \right) \left( n-3 \right)  }  \right) =\\ =\frac { 1 }{ n } -\frac { 3 }{ n\left( n-1 \right)  } +\frac { 3 }{ n\left( n-1 \right) \left( n-2 \right)  } -\frac { 1 }{ n\left( n-1 \right) \left( n-2 \right) \left( n-3 \right)  } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad .....\\ \\ P\left( { A }_{ n }^{ k+1 } \right) =\left( \begin{matrix} k \\ 0 \end{matrix} \right) \frac { 1 }{ n } -\left( \begin{matrix} k \\ 1 \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right)  } +\left( \begin{matrix} k \\ 2 \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right) \left( n-2 \right)  } -.......+{ \left( -1 \right)  }^{ k }\left( \begin{matrix} k \\ k \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right) ...\left( n-k \right)  } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad .....\\ \\ P\left( { A }_{ n }^{ n } \right) =\left( \begin{matrix} n-1 \\ 0 \end{matrix} \right) \frac { 1 }{ n } -\left( \begin{matrix} n-1 \\ 1 \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right)  } +\left( \begin{matrix} n-1 \\ 2 \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right) \left( n-2 \right)  } -......+{ \left( -1 \right)  }^{ n }\left( \begin{matrix} n-1 \\ n-1 \end{matrix} \right) \frac { 1 }{ n! }  $$

Temos que sumar todos os valores anteriores. Como en cada fila nos aparecen os números combinatorios, unha boa estratexia é colocar os sumandos a semellanza do triángulo de Pascal e despois pasar a sumar as diagonais, tal e como se indica na imaxe:

Euler non fai referencia a Blaise Pascal (16232-1662), posiblemente porque recoñecía de sobra a propiedade que se debe aplicar para sumar cada unha destas diagonais. Aparecera como "terceira consecuencia" nun libro do matemático francés no que explicita 19 resultados sobre o famoso triángulo que leva o seu nome. A obra, O triángulo aritmético, publicárase póstumamente no 1665 aínda que xa estaba impresa no 1654 pois Pascal xa a divulgara entre as amistades. Esa terceira consecuencia é a que agora vén a denominarse en inglés como hockey-stick identity.
Facendo uso desta identidade sumaremos a k-ésima diagonal do anterior triángulo:


$$\sum _{ i=k }^{ n-1 }{ { (-1) }^{ k } } \left( \begin{matrix} k \\ i \end{matrix} \right) \frac { 1 }{ n\left( n-1 \right) .....\left( n-k \right) } ={ \left( -1 \right) }^{ k }\frac { 1 }{ n\left( n-1 \right) .....\left( n-k \right) } \sum _{ i=k }^{ n-1 }{ \left( \begin{matrix} k \\ i \end{matrix} \right) } =\\ ={ \left( -1 \right) }^{ k }\frac { 1 }{ n\left( n-1 \right) ....\left( n-k \right) } \left( \begin{matrix} n \\ k+1 \end{matrix} \right) ={ \left( -1 \right) }^{ k }\frac { 1 }{ \left( k+1 \right) ! } $$
Finalmente poderemos obter o resultado de todas estas sumas, o que nos dá a probabilidade desexada, de que A gane nunha partida con n cartas:

$$P\left( { A }_{ n } \right) =1-\frac { 1 }{ 2! } +\frac { 1 }{ 3! } -\frac { 1 }{ 4! } +\frac { 1 }{ 5! } -....+{ { \left( -1 \right) } }^{ n-1 }\frac { 1 }{ n! } $$
Nun último toque fantástico Euler propón pensar que pasaría se o número de cartas fose infinito. 


$$P\left( { A }_{ \infty } \right) =1-\frac { 1 }{ 2! } +\frac { 1 }{ 3! } -\frac { 1 }{ 4! } +\frac { 1 }{ 5! } -....=1-\frac { 1 }{ e } =0,632120558\\ P({ B }_{ \infty })=\frac { 1 }{ e } =0,367879441$$
Leonard Euler calcula as probabilidades para A e B ata n=15 e conclúe que cando o número de cartas supera as 12, as cifras decimais dadas anteriormente xa non varían. Lembremos que o noso problema orixinal falaba de 14 profesores polo que a resposta está suficientemente calculada.

Para disfrutar de Euler:
The Euler Archive
Euler. El maestro de todos los matemáticos, Dunham, William, Editorial Nivola (2000)

sexta-feira, 28 de junho de 2019

Os premios "Explícoche Matemáticas 2.0". Edición 2019



‘A medición da liña costeira’, foi o traballo presentado pola alumna de 3º da ESO do IES As Bizocas ( O Grove) María Sanmartín Cabanas, e ‘Un mundo rodeado de matemáticas. Trigonometría’, é unha peza de Francisco Estévez e Paula Mourille, estudantes de 4º da ESO no IES Celanova Celso Emilio Ferreiro. Estes foron os audiovisuais premiados o pasado xoves 20/06/19 na 8ª edición do concurso Explícoche Matemáticas 2.0, organizado pola CNL da Facultade de Matemáticas da USC.


Na categoría de mellor valoración dos usuarios da arañeira o vídeo premiado foi‘Chiquicuriosidades’, realizado por Sara Marco Andrade, Carmen Caeiro Arca e Sofía Caramés Lage, alumnas de 4º de ESO do IES Frei Martín Sarmiento ( Pontevedra.)


Ademais dos premios cos que estaba dotado este concurso, o alumnado galardoado recibiu como agasallo o libro Mate-Glifos, do que xa falamos noutra ocasión.
Parabéns a todos os premiados, e tamén a todos os participantes. Seica así, aos pouquiños, Explícoche Matemáticas 2.0 xa leva xuntado un par de centos de vídeos relatando diversos aspectos das matemáticas.
Un último comentario do que teño que deixar constancia. No que fora un rechío estridente, o secretario xeral de política lingüística participara na pasada entrega de premios. Desta vez non se soubo nada del. Parece que con aquela intervención xa lle chegou. Demasiada dose de matemáticas en galego para quen ten como función principal prohibir as matemáticas en galego.

segunda-feira, 10 de junho de 2019

Bombelli, máis que complexos

Rafael Bombelli (1526-1572) foi no seu tempo un coñecido enxeñeiro hidráulico. Hoxe en día faise referencia a el cando falamos dos números complexos porque foi o primeiro en en atreverse con ese refugado obxecto matemático. Curiosamente os primeiros pasos con este tipo de números non se deron onde parecería máis natural, co tratamento das ecuacións de segundo grao, senón que apareceron no contexto das de grao 3.
Efectivamente, Girolamo Cardano xa chamara a atención sobre a cuestión cando considerou o seguinte problema no capítulo XXXVII do Ars Magna:
 divide 10 en dúas partes tales que o produto de ambas sexa 30 ou 40, é claro que este caso é imposible
A ecuación cuadrática ligada a este problema (no caso de tomarmos 40 como o valor do produto), x2+40 = 10x e Cardano obtén como solucións $${ x }_{ 1 }=5+\sqrt { -15 } \quad \quad \quad \quad { x }_{ 2 }=5-\sqrt { -15 } \quad \quad \quad $$
Cualificando o resultado tan sutil como inútil, Cardano non pasou de aí. En todo caso, podía aparcar a cuestión argumentando que este tipo de problemas cuadráticos son absurdos. Pero non tardaría en bater con outra dificultade que non se podía desprezar con tanta alegría. Ao abordar a resolución da ecuación cúbica volverían a aparecerlle raíces cadradas de números negativos. No capítulo do Ars magna adicado ao caso de cubo igual a cousa máis número trata coa seguinte ecuación:
$${ x }^{ 3 }=15x+4\quad \quad \quad \quad [1]$$
Aplicando o seu método de resolución obteríase como resultado
$$x=\sqrt [ 3 ]{ 2+\sqrt { -121 }  } +\sqrt [ 3 ]{ 2-\sqrt { -121 }  } $$
Como isto non entra dentro dos parámetros das matemáticas daquel tempo, considérase que a fórmula non era válida para este tipo de ecuacións, que se cualifican de irreducibles. Outra vez Cardano aparca o problema. Non pasaría de aí.
Quen se atrevería a cruzar esta liña había de ser Bombelli. Foi na súa obra matemática, Algebra, da que no XVI se publicaran tres tomos. Dos outros dous volumes non se tiña noticia ata que Ettore Bertolotti descubriu os manuscritos no 1923. É moi significativo o que se conta no MacTutor History of Mathematics da universidade esocesa de St Andrews sobre esta obra,  que nesta antes de mergullarse no uso de raíces cadradas de número negativos explicítanse as regras do produto dos signos que tan difíciles son de explicar ao alumnado de 1º da ESO:
+ ⋅ + = +             – ⋅  + = –            8⋅ 8 = 64                   (−4)⋅5 = –20
– ⋅ – = +             + ⋅ – =  +           (–5)⋅(–6 )= 30            5⋅ (−4) = −20

Claro que se abrísemos a  Álgebra de Bomelli polo folio 70 do Libro I, o aspecto destas regras sería moi diferente ao que acabamos de escribir aquí. Por poñer un exemplo, a última das igualdades enunciábase deste outro xeito:
Máis 5 veces menos 4 fai menos 20
Folio 70 da Álgebra (páx. 127 deste PDF)
Do anterior podemos sacar un par de leccións. A primeira,  que sen vimbios non se pode facer un cesto. Con estes saberes na faltriqueira estamos en mellores condicións de enfrentármonos ás raíces cadradas de negativos. Con todo, isto non significa Bombelli que tome en consideración as solucións negativas das ecuacións nin que admita coeficientes negativos. No estudo da resolución de ecuacións polinomiais seguirá distinguindo toda unha serie de casos co fin de que todos os coeficientes sexan sempre positivos. Os avances na selva das matemáticas, como vemos, foron construíndose aos poucos e con moito esforzo. A segunda das leccións é que unha boa notación facilita a comprensión das ideas matemáticas. Neste aspecto Bombelli tamén sería un innovador.

Álxebra con aritmética
Álgebra, tomo II, páxina 190 [347 do PDF]
Xa vimos a orixinalidade e Bombelli no relativo a explicitar as propiedades do produto de números negativos. Pasemos agora á parte puramente alxébrica.
No folio 190 do segundo tomo da Álgebra ocúpase do Capitolo di cubo eguale a tanti e numero. Para intentar captar mellor o sabor do momento ímola escribir coa notación orixinal.
$$\overset { 3 }{ \smile  } \quad Eguale \quad à \quad 6\quad \overset { 1 }{ \smile  } \quad p.40\\ { x }^{ 3 }\quad =\quad 6x\quad +40\quad \quad \quad [2]$$
Aínda que a notación de Bombelli non tivo éxito,  non podemos deixar de recoñecer a habilidade para trazar os camiños do futuro. A vía do establecemento dunha notación concentrada para expresar ideas matemáticas estaba comenzando a desenvolverse e el foi un dos precursores.  Pensemos que Cardano non usaba ningún tipo de símbolos.
Nunha entrada anterior xa comentaramos como Cardano resolve a cúbica sen termo en x2
 $${ x }^{ 3 }+px+q=0\quad \quad \quad \quad [3]$$
Mediante a fórmula
$$x=\sqrt [ 3 ]{ \frac {- q }{ 2 } +\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } }  } +\sqrt [ 3 ]{ \frac { -q }{ 2 } -\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } }  } $$
No caso da nosa ecuación [2] temos que tomar p=-6 e q=-40 polo que obtemos a seguinte solución :
$$R.c.\left\lfloor 20.p.R.Q.392 \right\rfloor .p.R.c.\left\lfloor 20.m.R.q.392 \right\rfloor \\\sqrt [ 3 ]{ 20+\sqrt { 392 }  } +\sqrt [ 3 ]{ 20-\sqrt { 392 }  }$$
Outra vez a notación de Bombelli é tan moderna que se nos fai transparente e non precisa explicación. Agora fai uso da seguinte suposición:
$$\sqrt [ 3 ]{ 20+\sqrt { 392 }  }=a+\sqrt { b}\\ \sqrt [ 3 ]{ 20-\sqrt { 392 }  }=a-\sqrt { b}$$
Como sabía que a solución da ecuación era x=4:
$$ x=\left( a+\sqrt { b }  \right) +\left( a-\sqrt { b }  \right) =2a=4$$
Entón a=2. Xa pode buscar sen ningunha dificultade o valor de b desenvolvendo o cubo do binomio:
$${ { \left( 2+\sqrt { b } \right) } }^{ 3 }=20+\sqrt { 392 } $$
É inmediato obter o valor  b=2 . De aí que:
$$R.c.\left\lfloor 20.p.R.Q.392 \right\rfloor .p.R.c.\left\lfloor 20.m.R.q.392 \right\rfloor \\ eguàle\quad 2.p.R.q.2 \quad\quad 2.m.R.q.2\quad eguàle\quad 4\\ \sqrt [ 3 ]{ 20+\sqrt { 392 }  } +\sqrt [ 3 ]{ 20-\sqrt { 392 }  }= \left( 2+\sqrt { 2 }  \right) +\left( 2-\sqrt { 2 }  \right) = 4$$
Unha pequena anotación fóra de liña. Como poderíamos introducir nunha aula de ensino secundario esta ecuación? Desde o punto de vista da súa resolución penso que o mellor contexto sería no momento en que tratemos das funcións. Teriamos que obter o punto de corte de dúas funcións ben coñecidas. Unha pequena contextualización do comentado máis arriba pode dar lugar a comprender o poder desas ferramentas das que dispoñemos hoxe en día. Con elas un alumno da secundaria pode, sen maior dificultade, abordar problemas que estaban nos límites do coñecemento matemático a mediados do XVI.



Álxebra con xeometría
Bombelli segue os pasos de Cardano, usa os seus métodos de resolución ata tal punto que, por exemplo, no capítulo de Cubo e tanti eguale a numero, usa a mesma ecuación que el
$${ x }^{ 3 }+6x=20\quad \quad \quad \quad [4]$$
que xa resolvéramos noutra entrada, cando falamos precisamente de Cardano. Daquela tomando
 p=6 e q=-20 polo que obtivemos a sorprendente igualdade
$$y=\sqrt [ 3 ]{ 10+\sqrt { 108 }  } +\sqrt [ 3 ]{ 10-\sqrt { 108 }  }=2 $$
que cos métodos aritméticos de Bombelli deixaría de ser tan sorprendente. Como sabemos que x=2 é solución
$$ x=\left( a+\sqrt { b }  \right) +\left( a-\sqrt { b }  \right) =2a=2$$
entón tomando como valor para a a súa metade (a=1), podemos pasar a calcular b mediante a igualdade:
$${ { \left( 1+\sqrt { b } \right) } }^{ 3 }=10+\sqrt { 108 } $$
Obtemos b=3. Velaí a seguinte conclusión:
$$\sqrt [ 3 ]{ 10+\sqrt { 108 }  }=1+\sqrt { 3}\\ \sqrt [ 3 ]{ 10-\sqrt { 108 }  }=1-\sqrt { 3}$$

Para xustificar este resultado Bombelli volve a desenvolver o cubo dun binomio ao estilo da época, isto é, desmontando unha figura cúbica en pezas.
Estilo s.XVI vs. reinterpretación s. XX
Pero outra vez Bombelli fai un novo engadido. Achéganos outra xustificación de carácter "plano" (bidimensional). Con isto deslígase o grao da ecuación da dimensión da xustificación xeométrica. Outro pequeno avance que non culminaría ata que Leibniz, nunha carta a Huygens, no 1673, ofrece a primeira verificación puramente alxébrica da resolución da ecuación cúbica.

Resolución plana dunha ecuación cúbica
Na seguinte aplicación temos un resolutor automático baseado na idea de Bombelli [podes facer scroll coa roda do rato]





Imos intentar explicar algo as ideas que xustifican esta aplicación.
Sexa x=BC=HX
Aplicando o teorema da altura ao triángulo rectángulo BDE, e tendo en conta que tomamos CD=1, obtemos que CE=x2
Construímos un cadrado de lado HI e área 20 (ou q, en xeral). Con BO=HC=6 (ou p, en xeral), aplicando outra vez o teorema da altura ao triángulo rectángulo EIM:

$$20={ HI }^{ 2 }=EH\cdot HX=EH\cdot BC=(EC+CH)\cdot BC=\left( { x }^{ 2 }+6 \right) x={ x }^{ 3 }+6x$$

O golpe final
Volvamos ao comenzo, consideremos outra vez a ecuación
$${ x }^{ 3 }=15x+4\quad \quad \quad \quad [1]$$
Que tiña como solución:
$$x=\sqrt [ 3 ]{ 2+\sqrt { -121 }  } +\sqrt [ 3 ]{ 2-\sqrt { -121 }  } $$
Agora as consideracións aritméticas de Bombelli volven a facer avanzar as matemáticas outro paso. Repitamos o procedemento xa comentado anteriormente:
$$\sqrt [ 3 ]{ 2+\sqrt { -121 }  }=2+\sqrt { -b}\\ \sqrt [ 3 ]{ 2-\sqrt { -121 }  }=2-\sqrt {- b}$$  $${ { \left( 2+\sqrt { -b } \right) } }^{ 3 }=2+\sqrt { -121 } \\ { { \left( 2-\sqrt { -b } \right) } }^{ 3 }=2+\sqrt { -121 } $$
É case inmediato obter o valor b=1 polo que así, por fin, se xustificaría a solución:
$$x=\sqrt [ 3 ]{ 2+\sqrt { -121 }  } +\sqrt [ 3 ]{ 2-\sqrt { -121 }  } =\left( 2+\sqrt { -1 }  \right) +\left( 2-\sqrt { -1 }  \right) =4\quad \quad \quad [5]$$
Claro que, esta notación moderna pode deturpar o espírito orixinal da Algebra de Bombelli. Por esta razón escribo con remorsos esta última igualdade. Escribir a  cadrada de -1ou o número imxainario  i levanos a caer nun anacronismo inxustificable xa que leva implícito toda a mochila do rico desenvolvemento do corpo dos números complexos. Bombelli, certamente, non tiña esa mochila.
Así e todo, escribir a raíz cadrada dun número negativo tal e como veño de facer en [5] tampouco lle fai xustiza a Bombelli. Volvendo á súa notación, el escribía así a raíz cadrada de 4: R.c.4. Xa que logo podería ter escrito:
$$2.p.R.c.m.1\\ 2+\sqrt { -1 } $$
Pero non o fixo. Posiblemente foi máis alá ao expresar a anterior expresión como 2.p.d.m. Onde p.d.m tería case o significado do noso número imaxinario i. Non se trata de escribir a raíz cadrada dun negativo, Bombelli, xa a tiña calculada e usaba ese resultado como un número co que operar nas mesmas condicións que calquera outro. Tiña razón Cantor, a esencia das matemáticas son a súa liberdade.

P.S.: como exercicio para o alumnado do ensino secundario, estaría ben estudar as solucións das cúbicas sen termos en x2 mediante os puntos de corte entre as gráficas das función y=x3 e a dunha unha recta y=mx+n. Nesta entrada xa hai unha pequena colección de propostas en [1], [2] e [4]

Recursos:
Álgebra, Bombelli
Rafael Bombelli, MacTutor History of Mathematics archive
Una historia de las matemáticas para jóvenes III. La historia de las ecuaciones, Ricardo Moreno Castillo, Editorial Nivola
Cardano y Tartaglia. Las matemáticas en el Renacimiento italiano, Francisco Martín Casalderrey, Editorial Nivola
El universo de las matemáticas, William Dunham, Editorial Pirámide
Bombelli's Algebra (1572) and a new mathematical object , Giorgio T. Bagni

quarta-feira, 29 de maio de 2019

Paseo matemático e xeolóxico por Santiago


Julio Rodríguez Taboada explica moi ben en que consite un paseo matemático. Trátase de ir pola rúa observando os elementos matemáticos que hai polo percorrido que se realice. Javier Santiago Caamaño fai o mesmo, pero agora usando as gafas da xeoloxía nese paseo. Os dous acompañan ao alumnado do CPI Os Dices (Rois) e nós podemos facelo tamén mediante esta admirable peza audiovisual.
Simetrías, elipses, círculos, traxectorias dos planetas, catenarias, determinación da altitude sobre o nivel do mar, GPS, cantidade de persoas nunha manifestación na Quintana, o cadrado dunha suma, calendarios, espirais,... Todo iso respecto das matemáticas polo que hai que temos que engadirlle as rochas graníticas, o Pórtico da Gloria e a orixe das pedras que o forman, a construción en pedra, o efecto da auga e o sal no granito, as anfibolitas, o gas radón,...
Estou seguro de que o alumnado que participou da xornada aínda non é quen de apreciar en que medida son afortunados por poderen disfrutar desta xornada. Pero tamén teño a certeza de que, cando dentro duns poucos anos, volvan a remexer neste vídeo, fagan memoria do acontecido ou simplemente vexan outra vez as elipses polas rúas compostelanas, lembrarán con agradecemento todo canto aprenderon.

quinta-feira, 23 de maio de 2019

Tapando un burato: a ecuación cúbica

Boa parte do tempo e dos esforzos no ensino secundario están ocupados pola álxebra, quizais nun grao un tanto excesivo. Con todo, os estudos limítanse ás formas lineares e cuadráticas. Quedámonos ás portas do estudo das expresións cúbicas. Se un segue profundizando nestes estudos na universidade volverá sobre a cuestión da resolución de ecuacións, pero pegando un gran salto, xa no ámbito da teoría de Galois, xernerándose así un baleiro que dificilmente pode ter xustificación.  Despois de rematar a carreira eu aínda tardei moitos anos en tapar este burato. Deixo aquí algunhas notas con ese remendo.

E, de súpeto, apareceu Cardano.
A finais do século XV Luca Pacioli (1445-1517), nesa altura un dos matemáticos que con máis coñecementos sobre o tema, estaba tan convencido da imposibilidade da cuadratura do círculo como da resolución da ecuación cúbica. Por iso o Ars Magna, publicado no 1545, debeu causar unha profunda impresión na pequena comunidade matemática da época, xa que despois dunha apaixoante historia e non pouco traballo, ese estraño personaxe que foi Girolamo Cardano (1501-1576), non só ofrece a solución da ecuación cúbica senón que coa inestimable axuda de Ludovico Ferrari (1522-1565) tamén o fai coa de grao 4 [nota aparte: un dos libros máis divertidos que lin nunca foi a autobiografía de Cardano, recoméndoo vivamente]
Naqueles tempos non se tomaban en consideración os números negativos. Tampouco se expresaban as solucións das ecuacións mediante fórmulas. Os manuais explicaban o método de resolución nun caso particular e entendíase que aplicando o mesmo algoritmo tamén se poderían resolver outras ecuacións da mesma forma. Por estas razóns compría facer un estudo de múltiples casos nos que os coeficientes serían todos positivos, polo que nalgúns deses casos algúns coeficientes debían aparecer no segundo membro da ecuación. Así, Cardano distinguirá 13 casos posibles para a ecuación cúbica. Para nós isto resultaríanos demasiado pesado, así que desenvolveremos a solución da ecuación cúbica segundo Cardano pero actualizando as formas e as notacións.
Unha das grandes aportacións de Cardano foi que, dada unha ecuación cúbica xeral: $$a{ x }^{ 3 }+b{ x }^{ 2 }+c{ x }+d=0$$ mediante o cambio $$x=y-\frac { b }{ 3a } $$ podemos eliminar o termo de segundo grao. Por exemplo, se partimos da ecuación $$2{ x }^{ 3 }-30{ x }^{ 2 }+162x-350=0\quad \quad \quad \quad [7]$$
$$x=y-\left( \frac { -30 }{ 6 }  \right) =y+5$$
$$2{ \left( y+5 \right)  }^{ 3 }-30{ \left( y+5 \right)  }^{ 2 }+162\left( y+5 \right) -350=0$$
Botando contas queda:$${ y }^{ 3 }+6y=20\quad \quad \quad \quad [2]$$
Esta última expresión é das que Cardano denominaba "cubo máis cousa igual a número" e que hoxe escribiriamos $${ y }^{ 3 }+py+q=0\quad \quad \quad \quad [z]$$
No noso exemplo p=6 e q=-20
Sen perda ningunha de xeneralidade, basta resolver este tipo de ecuacións para podermos establecer a resolución dunha cúbica calquera. Con este propósito Cardano servíase do desenvolvemento do cubo dun binomio.
Consideremos o seguinte cubo de aresta u+v . O cubo desta suma desenvólvese a seguir
Cubo dun binomio u+v
$${ \left( u+v \right)  }^{ 3 }={ u }^{ 3 }+3{ u }^{ 2 }v+3u{ v }^{ 2 }+{ v }^{ 3 }$$
Pasando todo ao primeiro membro e sacando factor común 3uv no terceiro e cuarto sumandos:
$${ \left( u+v \right)  }^{ 3 }-{ u }^{ 3 }-3{ u }^{ 2 }v-3u{ v }^{ 2 }-{ v }^{ 3 }=0\\ { \left( u+v \right)  }^{ 3 }-3uv\left( u+v \right) -{ u }^{ 3 }-{ v }^{ 3 }=0$$
Tomando: $$x=u+v\\ -p=3uv\\ -q={ u }^{ 3 }+{ v }^{ 3 }$$
Temos outra vez a expresión [z]: $${ y }^{ 3 }+py+q=0\quad \quad \quad \quad [z]$$
Cun novo cambio de variables: $$\begin{cases} t={ u }^{ 3 } \\ s={ v }^{ 3 } \end{cases}\quad \quad \quad \begin{cases} t+s=-q \\ t\cdot s={ u }^{ 3 }{ v }^{ 3 }={ \left( \frac { -p }{ 3 }  \right)  }^{ 3 } \end{cases}\quad \quad \quad \quad \begin{cases} t=-q-s \\ \left( -q-s \right) s={ \left( \frac { -p }{ 3 }  \right)  }^{ 3 } \end{cases}\quad $$
Resulta que a última ecuación é de segundo grao en s con solución $$s=\frac { -q }{ 2 } +\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } } $$
De aí que $$t=-q-s=\frac { -q }{ 2 } -\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } } $$
E así, por fin, obtemos a solución $$y=u+v=\sqrt [ 3 ]{ t } +\sqrt [ 3 ]{ s } =\sqrt [ 3 ]{ \frac {- q }{ 2 } +\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } }  } +\sqrt [ 3 ]{ \frac { -q }{ 2 } -\sqrt { { \left( \frac { q }{ 2 }  \right)  }^{ 2 }+{ \left( \frac { p }{ 3 }  \right)  }^{ 3 } }  } $$
No caso da nosa ecuación [2] temos que tomar p=6 e q=-20 polo que obtemos:
$$y=\sqrt [ 3 ]{ 10+\sqrt { 108 }  } +\sqrt [ 3 ]{ 10-\sqrt { 108 }  } $$
O realmente curioso é que Cardano enxergou detrás desta expresión o valor y=2 (!) que, efectivamente, será solución da ecuación [2].
Finalmente vemos como unha boa elección da denominación para esta ecuación anticipa a súa solución ;)... e o mesmo pasa coa [7].

quinta-feira, 2 de maio de 2019

Un problema de máximos

Determinar o ángulo no punto de corte
Unha das actividades que fago para organizar mellor as clases é a de revisar como e o que aprendera no seu día, incluso os sentimentos e as ideas que me provocaba o estudo deste ou daqueloutro tema.
Entre os obxectivos máis destacables do bacharelato temos o da introdución ao cálculo diferencial. Para iso requírense uns coñecementos bastante amplos de álxebra. Despois comenza unha escalada bastante dura. En primeiro lugar cómpre ter na faltriqueira unha certa gama de funcións, coas súas características máis importantes. O seguinte paso é o estudo dos límites e especialmente ás técnicas de cálculo de indeterminacións. Lembro que cando tivera que estudar o cálculo de límites quedara completamente desconcertado. Non lle vía a lóxica. Aínda máis, aquilo non me parecía matemáticas. O asunto aínda se puxera máis feo cando tivera que abordar o cálculo de derivadas. O concepto de derivada estaba encerrado dun límite que facía o asunto pouco menos que incomprensible. Con todo, os métodos para traballar coas derivadas non eran tan complicados como cabería esperar dese concepto tan encerellado.
Por fin o premio chegaba cando se podían resolver problemas realmente marabillosos, que só unhas semanas antes parecerían inabordables. Gardo un especial recordo dun no se que pedía calcular o ángulo que formaban dúas curvas no seu punto de corte. Pero había moitos máis, entre eles os clásicos de representación da gráfica de funcións.
Entre os problemas dos que máis gocei están os de optimización. Quizais o menos interesante foi polo que comenzamos; con todo é o que comparto aquí

Determina dous números que sumen 26 de forma que o seu produto sexa máximo.

Despois de toda esta volta de despiste, velaquí o problema que quería propoñer:

Consideremos todas as particións de 26, por exemplo 26 = 13+13 = 10+12+4 = 9+7+6+2 .... Achar a que nos dea o produto máximo.

Se un se centra no problema, verá que non é dificil de resolver. Incluso a súa resolución pode levarnos facilmente a facelo co caso xeral, o de determinar a partición de produto máximo para calquera natural. A  solución desta última cuestión é unha desas marabillas das matemáticas que nos reconcilian co espírito humano.