mércores, 23 de novembro de 2022

Un resultado sobre arcocotanxentes

Non imos dar un resultado sobre arcotanxentes, vai ser sobre arcoCOtanxentes. Se liches mal e pensabas que trataría sobre as insulsas arcotanxentes, podes abandonar este artigo.

As dúas anteriores entradas deste blogue ([1] e [2]) estiveron adicadas ofrecer solucións do seguinte problema recollido do libro Circo Matemático (Alianza Editorial) de Martin Gardner:

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$

A última de todas elas facía uso dun concepto matemático moi en desuso, o arcocotanxente. En concreto utilizaba a seguinte fórmula: $$arccot1+arccot2+arccot3=90$$
A definición das razóns trigonométricas seno, coseno e tanxente é moi clara. O mesmo podemos dicir das correspondentes razóns inversas cosecante, secante e cotanxente. De aí que as súas funcións inversas sexan, nun principio, conceptos da mesma dificultade: arcoseno, arcocoseno, arcotanxente, arcocosecante, arcosecante e arcocotanxente. Porén, como as razóns inversas só son iso, razóns inversas, apenas ten sentido o traballo coas mesmas. Isto leva que que as funcións inversas das razóns inversas fiquen marxinadas. Pero remexendo no problema dos tres cadrados achei un resultado no que si resulta natural o uso do arcocotanxente. Ademais o resultado realmente fermoso.
Vou reproducir un artigo de Charles W. Trigg aparecido no ano 1973 na revista The Fibonacci Quaterly porque, efectivamente, o resultado sobre arcocotanxentes é un resultado sobre a sucesión de Fibonacci. 
Para comezar temos que recordar unha propiedade moi coñecida polos afeccionados a esta sucesión, a identidade de Cassini. 
Identidade de Cassini. $F_{k+1}F_{k}-F_{k}^{2}=\left ( -1 \right )^{k}$
Non é complicado atopar na rede algunha dedución desta fórmula, como a seguinte, debida a Donald Knut:$$F_{k+1}F_{k-1}-F_{k}^{2}=det\begin{pmatrix} 1 &1 \\ 1 & 0 \end{pmatrix}^{k}=\left (det\begin{pmatrix} 1 &1 \\ 1 & 0 \end{pmatrix} \right )^{k}=\left ( -1 \right )^{k}$$

Para $k=2n+1$ a identidade de Cassini será: $$F_{2n+2}F_{2n}-F_{2n+1}^{2}=-1$$ Cambiando de signo obtemos outra fórmula $$F_{2n+1}^{2}-F_{2n+2}F_{2n}=1$$
Que usaremos para calcular a seguinte expresión:$$F_{2n+1}F_{2n+2}-F_{2n}F_{2n+3}=F_{2n+1}\left ( F_{2n+1}+F_{2n} \right )-F_{2n}\left ( F_{2n+2}+F_{2n+1} \right )=\\F_{2n+1}^{2}+F_{2n+1}F_{2n}-F_{2n}F_{2n+2}-F_{2n}F_{2n-1}=F_{2n+1}^{2}-F_{2n}F_{2n-1}=1$$
Temos pois que:$$F_{2n+1}F_{2n+2}-F_{2n}F_{2n+3}=1$$
Aplicando a propiedade fundamental de formación da sucesión de Fibonacci a $F_{2n+3}$ ($F_{2n+3}=F_{2n+2}+F_{2n+1}$ ) e sumando $F_{2n}^{2}$:

$$F_{2n+1}F_{2n+2}-F_{2n}\left ( F_{2n+2} +F_{2n+1}\right )+F_{2n}^{2}=F_{2n}^{2}+1\\ \left ( F_{2n+1}-F_{2n} \right )\left ( F_{2n+2} -F_{2n}\right )=F_{2n}^{2}+1$$ Consideremos o seguinte esquema no que o punto $Q$ está a unha distancia $F_{2n}$ de $N$. $R$ dista $F_{2n+1}$ unidades de $N$ e $R$ dista $F_{2n+2}$ de $N$. Aplicando a última fórmula deducida:

$$\frac{QP}{MP}=\frac{F_{2n+1}-F_{2n}}{\sqrt{F_{2n}^{2}+1}}=\frac{\sqrt{F_{2n}^{2}+1}}{F_{2n+2}-F_{2n}}=\frac{MP}{RP}$$
Onde calculamos MP aplicando o teorema de Pitágoras ao triángulo rectángulo $MNP$
Os triángulos $RPM$ e $QPN$ son semellantes xa que os lados que determinan o ángulo en $P$ son proporcionais. Entón o ángulo coloreado no vértice M, $ \angle QMP=\gamma $ e, como xa temos visto anteriormente, isto significa que $\alpha=\beta+\gamma$, ou
$$arccotF_{2n}=arccotF_{2n+1}+arccotF_{2n+2}$$
Lembremos a sucesión: $$\begin{matrix} F_{0} &F_{1} & F_{2} &F_{3} & F_{4} & F_{5} &F_{6} & F_{7} &F_{8}... \\ 0& 1& 1 & 2&3 &5 &8 &13 & 21... \end{matrix}$$
De aí que poidamos facer un desenvolvemento telescópico da seguinte suma:
$$arccot1=arccot2+arccot3=arccot2+arccot5+arccot8=....=\sum_{i=1}^{\infty }arccotF_{2i+1}$$

mércores, 16 de novembro de 2022

Tres cadrados, moitas solucións.2

Na anterior entrada presentaba este problema que aparecía no libro Circo matemático (Alianza Editorial) de Martin Gardner.

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$


Alí xa indicaba  que $\alpha=45$, polo que o problema é equivalente a demostrar que $\alpha+\beta+\gamma=90$. Tamén daba cinco solucións ao mesmo. Continuamos (e rematamos) a serie de solucións

6. Sen palabras
Quizais esta sexa a demostración máis simple

7. Números complexos
Despois da demostración máis simple, a máis complexa.
Os ángulos $\alpha$, $\beta$ e $\gamma$ son os argumentos dos números complexos $1+i$, $2+i$ e $3+i$:

$$1+ \ i=r_{1}e^{\alpha }\\1+2i=r_{2}e^{\beta }\\1+3i=r_{3}e^{\gamma }$$
$$\left ( 1+i \right )\left ( 1+2i \right )\left ( 1+3i \right )=r_{1}r_{2}r_{3}e^{\alpha+\beta +\gamma}$$
$$\alpha +\beta +\gamma =arg\left [ \left ( 1+i \right ) \left ( 2+i \right )\left ( 3+i \right )\right ]=arg\left ( 10i \right )=90$$

8. Ángulo inscrito
Tanto este resultado como o seguinte recollinos dese país das marabillas que é Cut the Knot. Como se verá, dúas pedras preciosas.

Por construción o ángulo ∠QTR é igual ao ángulo ∠RPS.
∠RPS é un ángulo inscrito na circunferencia que abrangue o mesmo arco que ∠RQS, polo que son iguais. Xa na solución 5 a este mesmo problema vimos que $\alpha$ é a suma de $\beta$ e $\gamma$ por ser exterior ao triángulo QRS.

9. Circunferencia inscrita nun cadrado
Isto é unha adaptación de Cut of de Knot

Sobre unha circunferencia de raio 5 trazamos todos os segmentos que se poden ver na imaxe. Consideremos o triángulo isóscele de ángulos $2\gamma$, $\theta$ e $\theta$. Como a súa suma é de 180º debe verificarse que $\theta=90-\gamma$. De aí que as denominacións dos ángulos $\gamma$, $2\gamma$, $\beta$ e $2\beta$ sexan coherentes. Nótese que continuamos coa mesma denominación para $\gamma$ e $\beta$ que nos apartados anteriores.
Como $2\gamma+2\beta=90$ tamén se verifica a igualdade que buscamos: $\gamma+2\beta=45$

10. As arcotanxentes
Foi esta solución a que me moveu a escribir estas entradas no blogue. Nalgunha outra ocasión xa presentara esta atractiva fórmula ([1], [2])protagonizada por arcotanxentes, de apariencia completamente inútil. 
$$arctan1+arctan2+arctan3=180$$
Está claro que $arctan1=90-\alpha$, $arctan2=90-\beta$ e que $arctan3=90-\gamma$ de aí que
$$90-\alpha+90-\beta+90.\gamma=180 \Rightarrow \alpha=90-\alpha=\beta+\gamma$$

11, As arcocotanxentes
Teño que confesar que esta solución é esencialmente igual á anterior, pero apetecíame introducir un este termo practicamente desaparecido da linguaxe matemática: arcocotanxente. Veremos que non é a derradeira vez que o utilice pois a iso estará adicada a seguinte entrada deste blogue.

$\alpha=arctan\left ( a \right ) \Rightarrow 90-\alpha=arccot\left (  a \right )$ polo tanto $arctan\left (a  \right )=90-arccot\left (   a\right )$
Recollo outra vez a atractiva fórmula do apartado anterior 
$$arctan1+arctan2+arctan3=180$$
E escríboa en función de arcocotanxentes para obter unha nova e non menos atractiva fórmula:
$$\left (\Rightarrow  90-arccot1 \right )+\left (\Rightarrow 90-arccot2  \right )+\left (\Rightarrow  90-arccot3 \right )=180\\arccot1+arccot2+arccot3=90$$
Pero resulta que $arcotan1=\alpha$, $arcotan2=\beta$ e $arcotan3=\gamma$, o que significa que $\alpha+\beta+\gamma=90$, que era o que queriamos demostrar.

luns, 14 de novembro de 2022

Tres cadrados, moitas solucións.1

Martin Gardner, no seu libro Circo matemático (Alianza Editorial) preséntanos o seguinte problema que lle chegou por carta indicando que llo propuxeran ao remitente en 5º de Primaria nunha escola de Moscú.

Tres cadrados. Demostra que $\alpha$ é a suma dos ángulos $\beta$ e $\gamma$


Gardner non se limita a ofrecernos o problema e a súa solución, senón que ofrece referencias interesantes e cargadas de información sobre todo o que escribe. Entre elas comenta que nun artigo da revista Journal of Recreational Mathematics chegaron a recompilarse 54 solucións deste problema. Non sei cales eran esas solucións. Con todo vou intentar ofrecer unha pequena colección delas, algunha realmente sorprendente. Invito ao eventual lector que intente abordar o problema antes de ir directamente ao listado de solucións pois estamos diante dunha cuestión que nos ofrece moitas vantaxes. É simple, facilmente tratable e permite que enchamos páxinas de debuxos bos de trazas.
Antes de nada, unha pequena anotación. Está claro que $\alpha=45$, polo que o problema é equivalente a demostrar que $\alpha+\beta+\gamma=90$

1. Solución trigonométrica
Martin Gardner pedía que se resolvese o problema usando só xeometría moi elemental, sen facer uso da trigonometría. Eu non lle fixen caso pois a primeira solución que me veu á cabeza foi a seguinte.
$$tan\left ( \beta +\gamma  \right )=\frac{tan\beta +tan\gamma }{1-tan\beta \cdot tan\gamma }=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot \frac{1}{3}}=1=tan\alpha $$
Como os tres ángulos son agudos tamén se verificará que $\alpha=\beta+\gamma$
Aquí aplicouse a fórmula da tanxente dunha suma. Unha alternativa sería usar a do seno ou a do coseno dunha suma. Así teriamos outras dúas novas solucións.

2. Solución de Gardner.
$\beta'=\beta$ por seren ángulos homólogos de triángulos semellantes. A suma $\beta'+\gamma$   é 45, a medida do ángulo $\alpha$

3. Un triángulo isóscele
Construíndo un triángulo isóscele podemos ver inmediatamente que $\alpha+\beta+\gamma=90$
4. Un xiro
Se xiramos o esquema inicial un ángulo $\beta'=|beta$ no sentido antihorario arredor do vértice superior O, podemos observar nese vértice como os tres ángulos suman 90


5. Ángulo exterior dun triángulo
O triángulo OPS é semellante a OTU. É evidente que $\gamma=\gamma'$
$\alpha$ é o ángulo exterior do triángulo OQR, de aí que $\alpha=\beta+\gamma'=\beta+\gamma$

Como esta entrada xa está resultando o suficientemente longa, vou deixar para outra as solucións que me pareceron máis atractivas.

xoves, 3 de novembro de 2022

Catro resultados elegantes

Noutra ocasión troxéramos por este espazo unha fórmula que non dubidaría en cualificar de elegante:

Resultado 1. $arctan1+arctan2+arctan3=180$

A súa demostración déixanos sen palabras:

Este resultado pode promovernos unha atractiva sospeita. Como os ángulos suman 180º, quizais tamén se verifique que

Resultado 2. Existe un triángulo con ángulos que teñen tanxentes 1, 2 e 3

Bastará con amosalo

E quizais engadir unha pequena aclaración: $$tan\beta =tan\left ( \alpha '+\gamma ' \right )=\frac{tan\alpha '+tan\gamma '}{1-tan\alpha 'tan\gamma '}=\frac{1+\frac{1}{3}}{1-1\cdot \frac{1}{3}}=2$$

Como veremos, este xentil triángulo non é un triángulo máis. Ten un rasgo distintivo que destacaron nun enunciado dun problema da LXV Olimpíada Matemática de Moscú no 2002. Recollémolo do libro La matemática elegante (URSS 2005) nesta versión:

Resultado 3. Se as tanxentes dos ángulos dun triángulo son números naturais, entón serán iguais a 1, 2 e 3.

Xa sabemos que esta afirmación ten sentido porque acabamos de ver un triángulo con ángulos de tanxentes 1, 2 e 3. Quédanos por verificar a súa unicidade. Partiremos de que as tanxentes dos ángulos $\alpha$, $\beta$ e $\gamma$ son os números naturais $a$, $b$ e $c$. Como $180-\gamma=\alpha+\beta$

$$tan\left ( 180-\gamma  \right )=tan\left ( \alpha +\beta  \right )=\frac{tan\alpha +tan\beta }{1-tan\alpha \cdot tan\beta }=\frac{a+b}{1-ab}=-c$$

De aí que $a+b+c=abc$

Curiosamente o resultado 3, de apariencia estritamente trigonométrica, é equivalente ao seguinte, eminentemente aritmético:

Resultado 4. Se a suma de tres naturais coincide co seu produto, serán o 1, o 2 e o 3.

Sen perda de xeneralidade consideremos que $a\leq b\leq c$

Se $a=1$: $1+b+c=bc$

$1+b=bc-c=c\left (  b-1\right ) \Rightarrow c\mid \left ( b+1 \right )$ como $c\geqslant b$ necesariamente $c=b+1$. Daquela $b-1=1$, polo que $b=2$ e $c=3$.

Consideremos agora o caso de que $a\geqslant 2$. Entón $b\geqslant 2$ 

Como $a+b+c\geqslant abc\geqslant 4c$ temos que $a+b\geqslant 3c$

Como $c+c\geqslant a+b\geqslant 3c$ temos que $2c\geqslant 3c$ entón $1\geqslant c$, o que é imposible pois $c\geqslant a\geqslant 2$. 

Xa que logo concluímos que só hai unha posibilidade, a de que $a=1$, $b=2$ e $c=3$.

venres, 21 de outubro de 2022

Intuición esganada cunha corda

Hai algunhas cuestións que nos chaman moito a atención por daren lugar a resultados sorprendentes, e se os cualificamos de sorprendentes é porque desafían a nosa experiencia ou a nosa intuición. Ese é o caso do problema do "cinto da Terra" que xa tratamos noutra ocasión ao recoller un artigo de Jaime Poniachik na revista Cacumen. A cuestión era a seguinte:

O cinto da Terra. Imaxinemos un cordel cinguido á Terra sobre o ecuador. Se lle engadimos un metro, vai quedar algo folgado, canto? Axustemos agora outra o cordel arredor dunha laranxa e despois agregámoslle tamén un metro. O sorprendente é que agora a folgura do cinto da laranxa coincide coa da Terra.


A explicación é ben simple. A lonxitude da corda inicial é 2πr. Se lle engadimos un metro a nova lonxitude será $$2\pi r+1=2\pi \left ( r+\frac{1}{2\pi } \right )$$

polo que o raio da corda extendida supera en 1/2π unidades ao raio da circunferencia inicial independentemente do valor do raio. No caso que nos ocupa, como incrementamos a lonxitude nun metro, o raio aumentaría uns 16 cm tanto no caso da Terra como no da laranxa. Se nos pediran un valor para este problema antes de ver a solución seguramente aventurariamos unha cantidade milimétrica pois,a priori, dá a impresión de que engadir un metro a unha cantidade tan desproporcionadamente maior como a da circunferencia terrestre (uns 40 000 km) vén sendo tanto como non engadir nada. 

Tratemos agora un problema cunha fasquía moi semellante. Segundo conta Zhúkov no seu libro El omnipresente número π (Editorial URSS, 2004), o profesor Anatoli  Dimítrievich Myshkis tivo a simpática idea de propoñer o seguinte problema nunha das súas clases:

Tíralle da corda. Supoñamos que o globo arredor do globo terráqueo se cingue unha corda inextensible. Despois de alongala un metro, tómase a corda por un punto e levántase da superficie da Terra ata a maior altura posible. Determínese esa altura.

O ideal sería que o lector ofrecese unha resposta, mesmo a escribise antes de seguir lendo a solución a esta espiñenta cuestión e que recollo esencialmente do citado libro.


Sexa OA=OC=OC'=R o raio terrestre, AB=a, AC=h e α=∠AOB. De todas estas cantidades só coñecemos R. O triángulo AOB é rectángulo en A, de aí que $$tan\alpha =\frac{a}{R}\quad\quad [1]$$

Aplicando o teorema de Pitágoras:$$\left ( R+h \right )^{2}=R^{2}+a^{2}\\R^{2}+2Rh+h^{2}=R^{2}+a^{2}$$

 Operando queda esta ecuación de segundo grao en h: $$h^{2}+2Rh+-a^{2}=0\\h=\frac{-2R\pm \sqrt{4R^{2}+4a^{2}}}{2}=-R\pm \sqrt{R^{2}+a^{2}}$$

Tomando o resultado positivo e despois multiplicando e dividindo por R:  $$h=\sqrt{R^{2}+a^{2}}-R=R\left [ \sqrt{1+\left ( \frac{a}{R} \right )^{2}} -1\right ]\quad\quad [2]$$

Só nos quedaría determinar $a$, ou neste caso,$\frac{a}{R}$. A cuestión non é simple. Teremos que ir máis alá da manipulación alxébrica e botar man de resultados do cálculo diferencial.

A lonxitude, en radiáns, do  arco AOC é $\pi \alpha$ e a da semicircunferencia CC' é $\pi R$, polo tanto o a medida do arco AC'  será a súa diferenza $\pi R-\pi \alpha $. A lonxitude da corda desde B, pasando por A ata C':$$a+\pi R-\pi \alpha =\frac{2\pi R+1}{2}=\pi R+\frac{1}{2}$$

Simplificando esta expresión e dividindo por R:$$\frac{a}{R}-\frac{R\alpha }{R}=\frac{1}{2R}\\ \alpha =\frac{a}{R}-\frac{1}{2R}$$

Substituíndo en [1]:$$tan \left ( \alpha \right ) =tan\left ( \frac{a}{R}-\frac{1}{2R} \right )=\frac{a}{R}\quad\quad [3]$$

Como $\alpha$ ten un valor moi pequeno e unha boa aproximación da tanxente na veciñanza do cero é a serie de Taylor temos que $$tan \left ( \alpha \right ) = \alpha +\frac{1}{3}\alpha ^{3}++\epsilon$$

Aplicando esta relación a [3] temos que $$\frac{a}{R}-\frac{1}{2R}+\frac{1}{3}\left ( \frac{a}{R}-\frac{1}{2R} \right )^{3} +\epsilon =\frac{a}{R}$$

$$\left ( \frac{a}{R} -\frac{1}{2R}\right )^{3}=\frac{3}{2R}-3\epsilon \\\frac{a}{R} -\frac{1}{2R}=\sqrt[3]{\frac{3}{2R}-3\epsilon}$$

Como comparativamente os valores de $\frac{1}{2R}$ e $3\epsilon$ son moi pequenos podemos establecer a seguinte aproximación $$\frac{a}{R}\approx \sqrt[3]{\frac{3}{2R}}$$

Que podemos substituír en [2] para finalmente poder achar o buscado valor de h: $$h\approx R\left [ \sqrt{1+\left ( \sqrt[3]{\frac{3}{2R}} \right )^{2}}-1 \right ]$$

Como valor de R tomarei o dado pola definición de metro da Academia Francesa: o metro é a dez millonésima parte dun cuadrante de meridiano, isto é, que a circunferencia da Terra será de 40 millóns de metros. É certo que agora sabemos que a Terra non é esférica e que posteriormente aos traballos de medición do meridiano redefiniuse o metro e axustáronse as medidas reais do globo terráqueo. A suposición dun planeta perfectamente esférico e a escolla deste valor para o raio quizais sexa tan romántica como o propio enunciado do teorema. De todas formas non inflúe no resultado final. Para poder achalo na última fórmula non nos serve a calculadora, temos que botar man dunha folla de cáculo ou do Wolphram Alpha. O resultado final é o inesperado valor h≈121 m

Agora que temos destrozada a intuición quizais poidamos abordar con mellor disposición a seguinte proposta que recollo do mesmo artigo de Poniachik nomeado anteriormente e que é unha adaptación dun problema referido por Ross Honsberger no libro The Mathematical Gardner (David A. Klamer, 1981). 

O riel dilatado. Consideremos un riel recto AB de 500 metros de lonxitude fixado nos extremos. A calor do verán prodúcelle unha dilatación de 2 metros, observándose unha xoroba de altura x. Estímese este valor se a dilatación é simétrica.

Como na cuestión anterior pídese unha resposta baseada na intuición antes de ter a tentación de botarlle un ollo á resposta. Comprobaremos ademais que esta proposta resulta moi acaída para ser tratada nun curso da ESO.

Xa que nos piden unha estimación imos considerar que a dilatación está formada por rectas. Así teremos dous triángulos rectángulos de catetos 250 e x cunha hipotenusa de 251 metros. Apliquemos o teorema de Pitágoras (e de paso, repasemos as chamadas identidades notables).$$x=\sqrt{251^{2}-250^{2}}=\sqrt{\left ( 251+250 \right )\left ( 251-250 \right )}=\sqrt{501}$$

Creo que nin cómpre unha calculadora para decatarse de que o riel alcanzou unha altura de case 71 m.

venres, 7 de outubro de 2022

Explícoche matemáticas 2022

Os premios
Van alá xa 10 edicións da convocatoria "Explícoche matemáticas 2.0". Dez veces dous minutos de matemáticas en galego. Un oasis no deserto xerado polo cambio climático que opera no ensino desde o ano 2010 co funesto decreto de prohibición de uso do galego nas matemáticas (e noutras materias). Gocemos con estes refachos de aire fresco que nos trae cada ano o SNL da Facultade de Matemáticas.


Este vídeo sobre os número de Mersenne, elaborado por Cristina Correa Segade, da facultade de Bioloxía, foi o gañador da edición 2022 do concurso convocado polo SNL da Facultade de Matemáticas "Explícoche matemáticas 2.0"
Na modalidade de ensino secundario os gañadores foron dous vídeos do IES Punta Candieira (Cedeira), un centro que tamén foi protagonista deste comezo de curso 2022-23 por ser onde se visibilizaron con máis forza os recortes sofridos polo ensino público.


Este vídeo sobre a medición do tempo foi realizado por Gema López Sixto, do citado IES de Cedeira foi o que recibiu o primeiro premio de Secundaria.
É unha mágoa que nesta ocasión non se recolleran todos estes vídeos nunha lista de reprodución da canle de You Tube da facultade.

Os accésits


Este segundo vídeo do IES de Cedeira acadou un dos accéits. A súa autora é Ema Lourido Ponde.


O segundo accésit foi para Noa Ferreiro Bellas e Laura Vispalia Díaz, estudantes do IES Castro da Uz (As Pontes) por tratar este tema clásico da trigonometría: como medir alturas usando un espello.

As mencións especiais.
Finalmente o xurado concedeu mencións aos vídeos ‘As matemáticas non serven para nada’ de Iván Rodríguez Vázquez, alumno do Colexio Marista Cristo Rey da Coruña; ‘Arte ou matemáticas’ de Irene González Calvo e Raquel González Calvo, estudante do IES Adormideras (A Coruña); e ‘É 4,99... igual a 5?’ de Alba Casás Fuentes e Nadia Suárez Martínez, estudantes do IES Manuel Murguía (Arteixo)






Parabéns a todos. Un agarimoso agradecemento polo esforzo realizado.

xoves, 15 de setembro de 2022

Un cadrado sen adubos

Con esta entrada remato unha pequena serie de tres que adiquei aos problemas de Dudeney. As outras dúas foron "O enigma do mercader" e "Tres enigmas de Dudeney". Nesta ocasión  recollo un problema do capítulo "Aventuras do Club dos Enigmas" titulado "O tesouro enterrado" no que se relata a historia de Dawkins, un mozo que buscaba facer fortuna en Australia e que tivo a sorte de escoitar unha conversa na que se describía onde estaba enterrado un tesouro. O lugar estaba nun terreo cadrado, e o que se precisaba era obter as dimensións do mesmo, pois esta foi a clave para atopalo. Vou prescindir dos detalles do relato pois o problema pareceume o suficientemente interesante como para poder prentalo nunha versión limpa,  sen ningún adubo. 

Acha as dimensións dun cadrado sabendo que un punto do seu interior está a 2, 3 e 4 unidades de tres vértices consecutivos.

Antes de seguir conviña facer un intento de resolución, así que, estimado lector,  non sigas lendo ata despois de traballar co problema por un pouco.

ç

É certo que despois de velo resolto, non parece gran cousa, pero a min levoume ben de tempo dar coa resposta a pesar de que a súa abordaxe é bastante obvia. 
Sexa x o valor do lado que temos que determinar. Despois de colocar os datos sobre o cadrado trazamos un par de segmentos a e b, perpendiculares aos lados.

Xa que logo, temos tres incógnitas (x, a e b) e tamén tres triángulos rectángulos, os de hipotenusas 2, 3 e 4. De aí obtemos as ecuacións:

$\left.\begin{matrix}4=\left ( x-b \right )^{2}+a^{2}\\ 16=\left ( x-a \right )^{2}+b^{2} \\9=a^{2}+b^{2}\end{matrix}\right\}$


Desenvolvendo as dúas primeiras e facendo uso da terceira obtemos:

$\left.\begin{matrix}4=x^{2}-2bx+b^{2}+a^{2}\\ 16=x^{2}-2ax+a^{2}+b^{2}\end{matrix}\right\}\left.\begin{matrix}4=x^{2}-2bx+9\\16=x^{2}-2ax+a^{2}+9\end{matrix}\right\}\left.\begin{matrix}2bx=x^{2}+5\\ 2ax=x^{2}-7\end{matrix}\right\}$

Despexando a e b e substituíndo eses valores na terceira ecuación:

$$ \left.\begin{matrix}b=\frac{x^{2}+5}{2x} \\ a=\frac{x^{2}-7}{2x}\end{matrix}\right\}\quad \left (  \frac{x^{2}+5}{2x}\right )^{^{2}}+\left (\frac{x^{2}-7}{2x}  \right )^{2}=9$$

Obtemos finalmente unha ecuación bicadrada: $$x^{4}+10x^{2}+25+x^{4}-14x^{2}+49=36x^{2}\\2x^{4}-40x^{2}+74=0\\x^{4}-20x^{2}+37=0$$

$$x=\sqrt{\frac{20\pm \sqrt{262}}{2}}=\left\{\begin{matrix} 4,2536& \\ 1,3809\end{matrix}\right.$$

Desbotamos a segunda das solucións porque nun cadrado desas dimensións non poderiamos situar un punto interior a distancia de 2 unidades de ningún vértice e, con máis razón, tampouco podería estar a 3 ou 4 unidades dos vértices. Entón a solución é 4,2536