quinta-feira, 22 de junho de 2017

A recta de Simson: a película.2


Na anterior entrada comenzáramos a comentar esta subxugante película de Trevor Fletcher do ano 1953. Continuemos.

O triángulo de Morley fóra de escena
Jakob Steiner (1796-1873) dálle o seu nome á deltoide pois foi el que demostrou que é a envolvente das rectas de Wallace-Simson dun triángulo dado ABC. A circunferencia de Feuerbach é tanxente en tres puntos á deltoide.
Na seguinte applet de geogebra quería que se puidera ver dinámicamente a deltoide de Steiner ao ir modificando os vértices do triángulo. Para elaborala foime fundamental un resultado que non aparece na película de Fletcher, xa que o achou Miguel de Guzmán no ano 2001. Estoume referindo ao seguinte teorema:
O triángulo de Morley e o que forman os vértices da deltoide de Steiner están xirados 180º. En particular os lados deses dous triángulos son paralelos.
FDE é o triángulo de Morley
de ABC
Claro que quizais haxa que explicar o resultado de Frank Morley (1860-1937),  que é o que nos dá a definición do triángulo que leva o seu nome:
Teorema de Morley. Dado un trigángulo calquera ABC, o triángulo formado pola intersección dos trisectores adxacentes dos ángulos de ABC é equilátero.
Tendo en conta este teorema e que o centro da deltoide coincide co do círculo de Feuerbach (de raio r) queda ben determinada a posición da deltoide. Ademais a deltoide pode inscribirse nunha circunferencia de raio 3r. A circunferencia circunscrita ao triángulo terá raio 2r. Ter presente que na seguinte aplicación podemos mover os vértices do triángulo.
[minuto 1:22]
A deltoide de Steiner
Steiner non só descubriu a deltoide senón que tamén demostrou que esta curva era unha hipocicloide que se xenera ao rodar unha circunferencia de raio r dentro doutra de raio 3r. Tamén se pode xenerar da mesma maneira facendo rodar unha circunferencia de raio 2r. O valor de r é o do raio da circunferencia de Feuerbach. Todo isto podémolo ver na seguinte aplicación.
[minuto 2:08]
As ecuacións paramétricas da deltoide serán:

$$\begin{cases} x=r\left( 2cost+cos2t \right) \\ y=r\left( 2sent-2sen2t \right) \end{cases}$$


Escena final
Por simetría é fácil de ver que o simétrico dun punto P nunha circunferencia de raio R respecto dunha corda AB, estará noutra circunferencia do mesmo raio e coa mesma corda. Ademais se a circunferencia de partida é a exinscrita ao triángulo ABC e tomamos como corda un dos lados do triángulo, poñamos AB, a circunferencia simétrica á exinscrita respecto de AB pasará polo ortocentro. De aí que as circunferencias que pasan polo ortocentro e por dous puntos do triángulo, sexan congruentes á exinscrita.
Na escena final veremos ao punto P como ortocentro dun triángulo congruente con ABC, xirado 180º: A'B'C'. Cando P coincide cun dos vértices de ABC, poñamos que sexa A, a recta de Wallace-Simson coincidirá coa altura que parte de A no triángulo ABC (e de A' no triángulo A'B'C'). Cando P é diametralmente oposto na circunferencia circunscrita a un dos vértices, poñamos A, a recta de Wallace-Simson coincidirá co lado BC (=B'C' por ser tamén diametralmente oposto na circunferencia cincunscrita de A'B'C'). Tamén podemos ver como o triángulo así construído A'B'C' mantén os seus puntos sobre as tres circunferencias congruentes á exinscrita. Mareante.
[minuto 5:58]
E xa que estamos metidos en fariña, dado un punto P na circunferencia exinscrita a un triángulo ABC, acabamos de falar do simétrico respecto dun dos lados AB. Chamémoslle P1 . Consideremos os simétricos de P respecto de BC e AC: P2 e P3 . Resulta que estes tres puntos son colineares co ortocentro.
A ATM (Association of Teachers of Mathematics) non só puxo á nosa disposición pola arañeira o filme Simson line do que tratamos aquí, pois podemos ver outros dous: The Cardioid e Four point conics Non estaría mal que alguén recollera a luva e perdera o tempo en comentalos. Eu disfrutei moito con este par de entradas xa que tiven a ocasión de facer referencia a unha boa restra de matemáticos: Robert Simson, William Wallace, Karl Feuerbach, Frank Morley, Jakob Steiner e Miguel de Guzmán.

terça-feira, 20 de junho de 2017

A recta de Simson: a película.1


Trevor Fletcher foi un profesor de matemáticas londinense que se atreveu a realizar varias películas matemáticas na década dos 50 e 60 do pasado século. Fletcher foi un defensor deste tipo de materiais, chegando a afirmar que se estas películas eran da calidade suficiente, cambiarían os temarios de matemáticas que se ensinarían no futuro. Aquí presento unha desas obras de Fletcher,  "A recta de Simson", un filme subxugante. A miña intención nesta entrada é intentar explicalo. Comencemos cun resultado que xustifica a definición do que será o noso obxecto de estudo:

Teorema de Wallace-Simson. Dado un triángulo ABC, se desde un punto P trazamos perpendiculares aos lados, obteremos o triángulo pedal formado polos tres puntos de corte desas perpendiculares cos lados. Estes tres puntos serán colineares se e só se P está na circunferencia circunscrita ao triángulo ABC.
Na aplicación visulizamos o teorema. Pódense mover os vértices do triángulo. [minuto 0:00]


Na honra do matemático escocés Robert Simson (1687-1768), á recta que contén eses tres pés das perpendiculares chámaselle recta de Simson. A pesar da denominación parece ser que Simson non ten nada que ver coa recta que leva o seu nome e quen realmente publicou (no ano 1799) o primeiro artigo sobre este tópico foi William Wallace (1768-1843), tamén escocés e tamén matemático. Por esta razón, no canto de aludir á devandita recta como atribuída únicamente a Simson, faise referencia a ela normalmente como a recta de Wallace-Simson. Velaquí un primeiro teorema:
As rectas de Wallace-Simson de dous puntos P e P' sobre a circunferencia circunscrita a un triángulo ABC forman un ángulo igual á metade do arco determnado por P e P'
[min 0:40]
A circunferencia dos 9 puntos
Imaxe do libro de Feuerbach
que ilustra o teorema  máis
fermoso da xeometría elemental
Á vista do anterior resultado temos o seguinte corolario:
Se P e P' son dous puntos diametralmente opostos sobre a circunferencia circunscrita a un triángulo ABC, as súas rectas de Wallace-Simson serán perpendiculares. 
Pero o máis curiososo de todo é que o punto de corte destas rectas, M, estará nunha circunferencia moi particular: a circunferencia dos 9 puntos. Esta circunferencia tamén recibe o nome de circunferencia de Feuerbach, en referencia a Karl Wilhelm Feuerbach (1800-1834), irmán do filósofo Ludwing Feuerbach. Aínda que o historiador Morris Kline se refire a el como un mestre, Karl Feuerbach, despois de obter o doctorado exerce como profesor nos Gymnasium alemáns. Foi detido na campaña represiva dos Demagogenverfolgung. Durante a súa estadía na prisión intentou suicidarse dúas veces con graves consecuencias, pois quedou eivado de por vida. Unha vida corta, pero tamén desgraciada, pois padeceu serios transtornos mentais que o incapacitaron para a impartición de clases. Un día acudiu ao Gymnasium coa espada en alto ameazando con cortarlle a cabeza a todos aqueles que non fosen quen de resolver as ecuacións que escribira no encerado. Este terrorífico episodio determinaría a súa retirada definitiva do ensino e a reclusión nos últimos seis anos da súa vida completamente asolado pola enfermidade mental.
Se a crcunferencia dos 9 puntos se identifica con Feuerbach é debido (en palabras de J. Cooldige (1873-1954)) ao "teorema máis fermoso da xeometría elemental que se descubriu desde a época de Euclides". Feuerbach no ano 1822 publicou un traballo que contiña o ese fermoso resultado:
A circunferencia que pasa polos tres pés das alturas dun triángulo tamén é tanxente ás  tres circunferencias exinscritas e á circunferencia inscrita.
Este mesmo resultado foi publicado no 1820 nun traballo de Brianchon (1783-1864) e Poncelet (1788-1867), aínda que parece demostrada a prioridade de Feuerbach no descubrimento do resultado. En todo caso, teñamos en conta que no relativo á denominación de teoremas e obxetos matemáticas, cada caso ten a súa historia particular. En Francia a circunferencia dos 9 puntos coñécese como circunferencia de Euler. Neste caso seguramente a desculpa é que o centro desa circunferencia é o punto medio do ortocentro e o circuncentro e polo tanto está na recta de Euler. Outra propiedade máis que se pode ver na película de Fletcher é que o raio da circunferencia de Feuerbach é a metade do da circunferencia circunscrita.

quinta-feira, 1 de junho de 2017

Premios do concurso "Explícoche matemáticas 2.0", eidición 2017

Onte entregáronse os premios do concurso Explícoche matemáticas 2.0, convocado polo SNL da Facultade de Matemáticas. Velaquí as miñas orgullosas alumnas, do IES Antón Losada (A Estrada), Aroa Ríos Torres, Sandra Vázquez Silva e Nerea Iglesias na recollida da mención especial polo traballo A piña de Regiomontano.
O acto, foi moi bonito. Ademais de dar lectura á acta do tribunal que valorou os traballos presentados e da entrega de premios en sí, proxectáronse os vídeos gañadores e a profesora Elena Vázquez Abal, da Área de Xeometría e Topoloxía da Facultade de matemáticas da USC, impartiu unha amena conferencia, Contos sobre mulleres científicas, que incidía sobre a discriminación da muller no mundo da ciencia. Deixo por aquí os gañadores desta edición.
Na Categoría A (2º Ciclo da ESO e Bacharelato e ciclos de Formación Profesional) ó traballo Fractais: copa de neve de Koch, de Irene Pereira Reboredo de 3º da ESO do IES Castro Alobre (Vilagarcía de Arousa)






Na Categoría B (Universidade)  vídeo gañador foi Poden os ourizos voar?, de Brais Fortes Novoa alumno de Mestrado da Escola Técnica Superior de Enxeñaría de Bilbao.

sexta-feira, 26 de maio de 2017

Programación de Astronomía

En primeiro de bacharelato a LOMCE armou unha trampa coas optativas que consiste en que se un alumno quer cursar determinadas materias optativas, ten que "escoller" á forza Relixión, a única materia optativa que, por defecto, ten unha carga lectiva dunha hora. Só hai un camiño para impedir a imposición da Relixión é ofertar unha materia de libre configuración do centro. Velaquí unha proposta que elaboramos no Departamento de Matemáticas do IES Antón Losada Diéguez (A Estrada) e que solto por aquí por se lle pode ser útil a alguén.

sexta-feira, 19 de maio de 2017

O plano de Minkowski

Supoño que sucede algo semellante noutras materias, pero voume referir únicamente ás matemáticas. Se o currículo xa era dunhas dimensións inabarcables, coa LOMCE foise moito máis alá. Durante uns anos, na materia de Matemáticas I de 1º de bacharelato, desapareceran os números complexos. Sempre me pareceu unha mágoa non estudalos, tan siquera mínimamente, para abordar algunhas das cuestións máis interesantes do desenvolvemento das matemáticas, como a de presentar un corpo completo ou dar resposta á cuestión da resolución das ecuacións polinomiais de calquera grao. A cuestión é que agora os complexos volven a estar dentro do currículo.
O que sempre se mantiveron as autoridades educativas nesa mesma materia foron os contidos da xeometría plana (o espazo vectorial R2, o espazo afín coas ecuacións da recta,e o espazo euclidiano coa introdución do produto escalar e a corresponte métrica asociada...). Este curso, ao tratar este tema na aula quixen que polo menos enxergaran as razóns de por que lles explicaba cal era a idea abstracta de espazo vectorial. Como o asunto vai moi forzado, introducín a cuestión falándolle dun dos máis grandes matemáticos do XX: Nicolás Bourbaki. Unha das súas teimas máis coñecidas era a concebir as matemáticas a partir dunha idea fundamental, a de estrutura. Con algo de sorna pedinlle ao alumnado que me trouxeran ao día seguinte algunha intmidade de Bourbaki (como a da data de nacemento, morte, se casara, tivera fillos... ). Non imaxinaba eu que moitos deles xa tiñan a resposta moito antes de rematar a clase...Malditos móbiles!
MIR, mágoa de editorial
A culpa desta entrada tena a pregunta dunha alumna. Despois de levar uns poucos días remexendo na xeometría analítica á rapaza ocorréuselle que os dous temas tratados podían ter algunha relación. Razoaba que se os complexos formaban un plano e na xeometría analítica estabamos a estudar un plano, algo debían ter en común,  Isto fixo que me viñera á memoria a xeometría de Minkowski, que dalgunha forma daba resposta á cuestión.
O que segue débese esencialmente a este libro, El universo tetradimensional de Minkowski, de A. A. Sazánov, daquela marabillosa (e barata) editorial, a MIR.


Xeometría de Minkowski
Dado o espazo vecvtorial R2, definimos a seguinte especie de produto escalar:
$$\left< \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right)  \right> ={ x }_{ 1 }{ x }_{ 2 }-{ y }_{ 1 }{ y }_{ 2 }$$
Segundo esta definición o produto escalar é bilinear, simétrico, pero non está definido positivo.
$$Sexa\quad \vec { u } =\left( x,y \right) ,\quad \left< \vec { u } ,\vec { u }  \right> \ge 0\quad \Longleftrightarrow \quad { x }^{ 2 }\ge { y }^{ 2 }$$
$$Sexa\quad \vec { u } =\left( x,y \right) ,\quad \left< \vec { u } ,\vec { u }  \right> =0\quad \Longleftrightarrow \quad { x }^{ 2 }={ y }^{ 2 }\quad \Longleftrightarrow \quad x=\pm y$$
As rectas x=±y chámanse rectas isótropas. Estas rectas dividen o plano en catro sectores (esquerdo, dereito, superior e inferior).
A cónica unidade non será a circunferencia, senón as hipérbolas que teñen por asíntotas as rectas isótropas.
O produto escalar danos a condición de perpendicularidade:
$$Sexa\quad \vec { { u }_{ i } } =\left( { x }_{ i },{ y }_{ i } \right) \quad para\quad i\in \left\{ 1,2 \right\} $$
$$\vec { { u }_{ 1 } } \bot \vec { { u }_{ 2 } } :\Longleftrightarrow \left< { \vec { { u }_{ 1 } }  },{ \vec { { u }_{ 2 } }  } \right> =0\Longleftrightarrow { x }_{ 1 }{ x }_{ 2 }-{ y }_{ 1 }{ y }_{ 2 }=0\Longleftrightarrow { m }_{ 1 }:=\frac { { y }_{ 1 } }{ { x }_{ 1 } } =\frac { { x }_{ 2 } }{ { y }_{ 2 } } :=\frac { 1 }{ { m }_{ 2 } } $$
Se lle chamamos m1 á pendente da recta que pasa pola orixe e polo punto (x1 ,y1) e m2 á pendente da recta que pasa pola orixe e polo punto (x2 ,y2) non sería mal exercicio para este nivel (1º de bacharelato) preguntar polo significado xeométrico da relación que se estabelece na liña anterior entre m1 e m2. Xa o adianto: as rectas de pendente m1 e m2 serán simétricas respecto de y=x pois son funcións inversas a unha da outra. Velaí que no plano de Minkowski a ortogonalidade tradúcese en simetría respecto da gráfica da función identidade.
Con todo, o máis divertido está por chegar e resulta do cáculo de módulos a partir da definición do produto escalar minkowskiano.
Imase 1. Os catro sectores do plano de Minkowski
$$Sexa\quad \overrightarrow { u } =(x,y)\quad \left| \overrightarrow { u }  \right| =\sqrt { \left< \overrightarrow { u } ,\overrightarrow { u }  \right>  } =\sqrt { { x }^{ 2 }-{ y }^{ 2 } } $$
Polo tanto o módulo dos vectores situados nos sectores esquerdo e dereito será un número real e o dos outros sectores será un imaxinario puro. Así o primeiro par de sectores recibe o cualificativo de reais e o segundo par o de imaxinario.
E que sucede cos ángulos? Partamos da coñecida fórmula:
$$cos\left( \overrightarrow { u } ,\overrightarrow { v }  \right) =\frac { \left< \overrightarrow { u } ,\overrightarrow { v }  \right>  }{ \left| \overrightarrow { u }  \right| \left| \overrightarrow { v }  \right|  } $$
Imaxe2. Ángulos
Calculemos o ángulo que forma un vector de compoñentes (x,y) do sector real positivo co vector unitario (1,0)
$$cos\left( \overrightarrow { u } ,(1,0) \right) =\frac { \left< (x,y),(1,0) \right>  }{ \left| (x,y) \right| \left| (1,0 \right|  } =\frac { x }{ \sqrt { { x }^{ 2 }{ - }{ y }^{ 2 } } \sqrt { 1-0 }  } =\frac { x }{ \sqrt { { x }^{ 2 }-{ y }^{ 2 } }  } \ge 1$$
Idem co sector superior. Velaquí o coseno do ángulo dun vector (x,y) deste sector co vector (0,1):
$$cos\left( \overrightarrow { v } ,\left( 0,1 \right)  \right) =\frac { \left< \left( x,y \right) ,\left( 0,1 \right)  \right>  }{ \left| \left( x,y \right)  \right| \left| \left( 0,1 \right)  \right|  } =\frac { -y }{ \sqrt { { x }^{ 2 }-{ y }^{ 2 } } \sqrt { -1 }  } =\frac { -y }{ i\sqrt { -1\left( { y }^{ 2 }-{ x }^{ 2 } \right)  }  } =\frac { -y }{ { i }^{ 2 }\sqrt { { y }^{ 2 }-{ x }^{ 2 } }  } =\frac { y }{ \sqrt { { y }^{ 2 }-{ x }^{ 2 } }  } $$
Este valor é tamén un número real maior ou igual que 1.
Ao tomar límites cando o vector ū se aproxima ás isótropas (x=y ou x=-y), os cosenos anteriores tenden a +∞ ou - ∞. Este panorama ten o seu desenvolvemento natural coa extensión complexa da función coseno:
$$cosz=\frac { { e }^{ iz }+{ e }^{ -iz } }{ 2 } $$
Como os valores dos cosenos obtidos anteriormente son sempre reais, os ángulos anteriores serán da forma iφ, con φ∈R. Así
$$cos\left( i\varphi  \right) =\frac { { e }^{ i(i\varphi ) }+{ e }^{ -i(i\varphi ) } }{ 2 } =\frac { { e }^{ -\varphi  }+{ e }^{ \varphi  } }{ 2 } =cosh\varphi  $$
En consecuencia teremos as seguintes fórmulas:
$$sen\left( i\varphi  \right) =\sqrt { 1-{ cos }^{ 2 }\left( i\varphi  \right)  } =\sqrt { 1-{ cosh }^{ 2 }{ \varphi  } } =\sqrt { -{ senh }^{ 2 }{ \varphi  } } =isenh\varphi $$
$$tan\left( i\varphi  \right) =\frac { sen\left( i\varphi  \right)  }{ cos\left( i\varphi  \right)  } =\frac { isenh\varphi  }{ icosh\varphi  } =itanh\varphi $$
Só por ver estas fórmulas merecía que se desenvolvese a idea do plano de Minkowski.

Cambio de base ortonormal
Consideraremos un cambio entre unha base {e1, e2} e outra {e'1, e'2}. Onde os vectores que comparten o mesmo índice estean no mesmo sector e de forma que cada base estea formada por un par de vectores ortonormais.Visto o anterior, a ninguén lle extrañará que a matriz de cambio de entre bases teña a seguinte expresión:
$$\begin{pmatrix} cosh\varphi  & senh\varphi  \\ senh\varphi  & cosh\varphi  \end{pmatrix}$$
Polo tanto o cambio de coordenadas entre dous sistemas de referencia ortornormais verificarán a igualdade:
$$\left( \begin{matrix} x' \\ y' \end{matrix} \right) =\begin{pmatrix} cosh\varphi  & senh\varphi  \\ senh\varphi  & cosh\varphi  \end{pmatrix}\left( \begin{matrix} x \\ y \end{matrix} \right) $$
Unhas poucas contas máis:
$$x'=x\cdot cosh\varphi +y\cdot senh\varphi =x\cdot cosh\varphi +y\cdot cosh\varphi \cdot tanh\varphi =cosh\varphi \left( x+y\cdot tanh\varphi  \right) =\frac { x+y\cdot tanh\varphi  }{ \sqrt { 1-{ tanh }^{ 2 }\varphi  }  } $$
$$y'=x\cdot senh\varphi +y\cdot cosh\varphi =x\cdot cosh\varphi \cdot tanh\varphi +y\cdot cosh\varphi =cosh\varphi \left( x\cdot tanh\varphi +y \right) =\frac { x\cdot tanh\varphi +y }{ \sqrt { 1-{ tanh }^{ 2 }\varphi  }  } $$
Ben, xa temos unha chea de fórmulas, e agora que?

A transformación de Lorentz
Na mecánica clásica, se consideramos dous sistemas de referencia que se moven, un respecto ao outro, cunha velocidade v, a tranformación de coordenadas (chamada de Galileo) é a seguinte:
$$\begin{cases} x'=x \\ y'=y-vt \end{cases}$$
Esta transformación permítenos estudar o movento nun sistema de referencia que se mova con velocidade constante a respecto doutro. Este cambio de coordenadas caracterízase porque a medida do tempo é independente do sistema de referencia e  na invariancia da lonxitude dunha barra OP respecto do sistema de referencia. Se falamos de relatividade galileana estamos indicando que podemos intercambiar o que se move con velocidade constante e o que está en repouso.
A teoría da relatividade einsteniana introdúcese coa transformación de Lorentz. O movemento relativa de dous sistemas de refencia virá dado polas fórmulas:
$$\begin{cases} x'=\frac { x-vt }{ \sqrt { 1-{ \left( \frac { v }{ c }  \right)  }^{ 2 } }  }  \\ t'=\frac { t-x\cdot \left( \frac { v }{ { c }^{ 2 } }  \right)  }{ \sqrt { 1-{ \left( \frac { v }{ c }  \right)  }^{ 2 } }  }  \end{cases}$$
Que son esencialmente as mesmas fórmulas do cambio de coordenadas ás que chegaramos anteriormente. Basta con considerar:
$$y=ct\\ tanh\varphi =-\frac { v }{ c } $$


Contraccións e simultaneidade
Imaxe 3
Consideremos un suceso P(xP, yP) sobre a recta y'
$$\begin{cases} tan\left( i\varphi  \right) =\frac { \left| NP \right|  }{ \left| ON \right|  } =\frac { { x }_{ P } }{ i{ y }_{ P } } =-i\frac { { x }_{ P } }{ { y }_{ P } }  \\ tan\left( i\varphi  \right) =itanh\varphi  \end{cases}polo\quad que\quad tanh\varphi =-\frac { { x }_{ P } }{ { y }_{ P } } $$
$${ x }_{ P }=-{ y }_{ P }\cdot tanh\varphi $$
$${ x' }_{ P }=\frac { { x }_{ P }+{ x }_{ P }\cdot tanh\varphi  }{ \sqrt { 1-{ { tanh }^{ 2 }\varphi  } }  } =\frac { { -y }_{ P }\cdot tanh\varphi +{ y }_{ P }\cdot tanh\varphi  }{ \sqrt { 1-{ { tanh }^{ 2 } }\varphi  }  } =0$$
$${ y' }_{ P }=\frac { { y }_{ P }+{ x }_{ P }\cdot tanh\varphi  }{ \sqrt { 1-{ { tanh }^{ 2 }\varphi  } }  } =\frac { { { y }_{ P }-y }_{ P }\cdot tanh\varphi \cdot tanh\varphi  }{ \sqrt { 1-{ { tanh }^{ 2 } }\varphi  }  } ={ y }_{ P }\sqrt { 1-{ tanh }^{ 2 }\varphi  } $$
E así deducimos a coñecida contración do tempo na dirección do movemento:
$$ { t' }_{ P }=\frac { { y' }_{ P } }{ c } =\frac { { y }_{ P }\sqrt { 1-{ tan }^{ 2 }\varphi  }  }{ c } =\frac { { y }_{ P } }{ c } \sqrt { 1-{ \left( \frac { v }{ c }  \right)  }^{ 2 } } ={ t }_{ P }\sqrt { 1-{ \left( \frac { v }{ c }  \right)  }^{ 2 } }  $$
Imaxe 4




Isto ten que ver coas sorpresas que descubriu a teoria da relatividade respecto da simultaneidade. Dise que dous sucesos son simultáneos respecto dun sistema de referencia se a súa segunda coordenada é a mesma nese sistema. Na imaxe 4 temos que  P e N son simultáneos no sistema XY; P e Q son simultáneos nun sistema X'Y' dun móbil con velocidade v respecto do considerado no sistema XY.











Imaxe 5
Unha consecuencia adicional desta nova perspectiva da simultaneidade de sucesos afecta ás medidas das lonxitudes xa que éstas variarán segundo a velocidade á que se movan os sistemas de  referencia.
Efectivamente, cando medimos a lonxitude dunha barra estamos considerando que calculamos a diferenza entre os seus extremos simultáneamente.
Dada unha barra de lonxitude l=|OL| respècto do sistema XY, se a medimos respecto de X'Y', debemos facelo simultáneamente respecto este sistema, entón a súa lonxitude será l'=|OL'|.
$$\begin{cases} cos\left( i\varphi  \right) =\frac { \left| OL \right|  }{ \left| OL' \right|  } =\frac { l }{ l' }  \\ cos\left( i\varphi  \right) =cosh\varphi =\frac { 1 }{ \sqrt { 1-{ tanh }^{ 2 }\varphi  }  }  \end{cases}$$
Entón podemos explicar así a contracción dunha barra de lonxitude l en movemento
$$l'=l\cdot \sqrt { 1-{ tanh }^{ 2 }\varphi  } =l\cdot \sqrt { 1-{ \left( \frac { v }{ c }  \right)  }^{ 2 } } $$

Relatividade visual
Quen queira seguir remexendo nos aspectos xeométricos da teoría da relatividade, ademais de recomendarlle o libro de Sazánov, pode botarlle un ollo ao portal de Xabier Prado Orbán, Relatividade visual

terça-feira, 9 de maio de 2017

A piña de Regiomontano


No IES Antón Losada (A Estrada) participamos na edición deste ano no concurso convocado pola Comisión de Normalización Lingüística da Facultade de Matemáticas da USC, Explícoche matemáticas 2.0. Facémolo con este vídeo no que rescatamos un problema do século XV. Entre outras cousas, trátase de poñer en evidencia que as matemáticas poden, e deben, ir da man da normalización lingüística, por moito que lles pese aos que defenden o decreto do plurilingüismo e a ideoloxía subxacente de expulsión da lingua galega do ensino do ámbito científico.

Resólvese un problema de optimización tomando como punto de referencia o monumento ao labrego, da parroquia de Lagartóns (A Estrada), erixido no ano 1916 en conmemoración dunha victoria agrarista do ano anterior. O problema en cuestión é esencialmente o mesmo que propuxo Regiomontano no 1471. Consiste en determinar a distancia á que se ten que situar unha persoa para que o ángulo de visión dunha estua sexa máximo. Cos datos que aportamos (ver Ilustración 1), estamos diante dun típico problema de cáculo de máximos que pode ser resolto polo alumnado de 1º de bacharelato mediante o cálculo de derivadas.


Alternativamente, no vídeo propoñemos unha solución que está ao alcance dun alumno da secundaria obrigatoria pois únicamente bastaría ter en conta que os ángulos que abarcan o mesmo arco SI son iguais (ver Ilustración 2) e que, obviamente calquera ángulo α con vértice nun punto V da recta v é menor que o correspondente ángulo β en Q:


Para obter a solución precisamos trazar unha circunferencia que pase polos puntos superior (S) e inferior (I) da estatua e que sexa tanxente á recta que marca a altura do ollo do observador (v) (ver Ilustración 3). O centro desta circunferencia debe estar na mediatriz m de S e I. Chamémoslle a á distancia entre m e v, sabemos que o raio da circunferencia que nos dará a solución debe ser a .Así a circunferencia de raio a e centro S cortará á recta M no punto H, quen será o centro da circunferencia buscada.

domingo, 23 de abril de 2017

Matemáticas en galego, tamén coa LOMCE

Hai uns días publicouse a versión galega da unidade didáctica Xeometría analítica do plano. Como todas as outras 68 unidades, pode facerse un uso non comercial dela, incluso se pode modificar e adaptar. Só se pide citar a fonte. Trátase do último chanzo na edición de material didáctico de matemáticas en galego, que se pode consultar, traballar on-line, ou descargar do portal de materiais ed@d en galego para a LOMCE e que forma parte do excelente e xeneroso Proyecto Descartes, unha web en continua renovación e chea de recursos.
 
Xeometría analíca do plano Fonte: Proyecto Descartes Licenza: Creative Comons BY- NC-SA Ao premer na icona da impresora obtemos, en formato PDF, un libro de texto adaptado a esta unidade didáctica dixital. Tamén temos un caderno de traballo, tanto en formato PDF, como en formatos editables (.doc e .odt). A proposta metodolóxica asociada a estes cadernos de traballo consiste en que o alumnado os use como guía para ir realizando as actividades da unidade.
Premendo nas frechas da parte inferior, ou navegando polo índice da esquerda, podemos acceder a cada un dos apartados da unidade. En todos eles temos actividades en xanelas emerxentes e unha escena interactiva especialmente preparada para a aprendizaxe da cuestión tratada en cada momento. No menú superior temos os seguintes apartados: Antes de empezar, Contidos, Exercicios [1] e [2], Auto-avaliación, Para enviar ao titor, Para saber máis. Invítovos a premer nos dous listados de exercicios (un de vectores e outro de rectas) ou no último apartado, no que se trata un tema algo máis avanzado, neste caso o da circunferencia dos nove puntos. E así, podemos repetir isto ata nun total de 69 unidades didácticas. Unha pequena fenda na que furar contra o funesto decreto do plurilingüismo, que forza a desligar as matemáticas, e en xeral o saber científico, do emprego da lingua galega.
Matemáticas en galego do Proxecto ED@D
Velaquí o listado de todas as unidades. Que as desfrutes.

1º ESO
Os números naturais
Múltiplos e divisores
Os números enteiros
Números decimais
Fraccións
Proporcionalidade
Expresións alxébricas
Rectas e ángulos no plano
Polígonos, perímetros e áreas
A circunferencia e o círculo
Taboas e gráficas Estatística e probabilidade

2º ESO
Potencias e raíces con números enteiros
Fraccións
Decimais
Proporcionalidade
Expresións alxébricas
Ecuacións
Sistemas de ecuacións
Semellanza. Teorema de Pitágoras
Corpos xeométricos
Áreas de corpos xeométricos
Volume dos corpos xeométricos
Funcións
Estatística

3ºESO. Orientación ás Ensinanzas Académicas
Os números racionais
Polinomios
Ecuacións de segundo grao
Sistemas de ecuacións
Progresións
Figuras planas. Propiedades métricas
Movementos no plano
Corpos xeométricos
Funcións e gráficas
Funcións lineais e cuadráticas
Estatística Probabilidade

3ºESO. Orientación ás Ensinanzas Aplicadas
Os números racionais
Polinomios
Ecuacións de segundo grao
Sistemas de ecuacións
Progresións
Figuras planas. Propiedades métricas
Movementos no plano
Corpos xeométricos
Funcións e gráficas
Funcións lineais e cuadráticas
Estatística

 4ºESO. Orientación ás Ensinanzas Académicas
Os números reais Potencias e radicais
Polinomios
Ecuacións e sistemas
Inecuacións
Semellanza
Trigonometría
Xeometría analítica do plano
Funcións e gráficas
Funcións polinómicas
Funcións racionais, exponenciais e logarítmicas

 4ºESO. Orientación ás Ensinanzas Aplicadas
Números enteiros e racionais
Os números reais
Problemas aritméticos
Polinomios
Ecuacións e inecuacións
Sistemas de ecuacións
Semellanza e trigonometría
Problemas xeométricos
Funcións e gráficas
Funcións elementais

quinta-feira, 30 de março de 2017

O experimento de Eratóstenes

Web do experimento
O Experimento Eratóstenes é un proxecto colaborativo e aberto a todos os centros que queiran participar. Ten como fin  reproducir,  na medida do posible, a medición da Terra feita polo que fóra director da Biblioteca de Alexandría no III a.C. En concreto, tratábase de medir a sombra dun pau vertical de 1 m. no momento en que alcanzaba a súa lonxitude mínima (mediodía local) o día 21 de marzo, un despois do equinoccio de primavera.
Ao apuntarse no portal como centro participante, recibíase un correo con aqueles centros que tiñan aproximadamente o mesmo meridiano. O alumnado de 4º da ESO do IES Antón Losada (A Estrada) participou na actividade. Tivemos a fortuna de que outro dos inscritos, un centro de Youssoufia (Marrocos) estivese prácticamente no noso mesmo meridiano.
Para saber a hora solar usamos esta aplicación. Cando o Sol estaba no punto máis alto saímos ao patio do centro, e medimos a sombra dun pau de 1 m. de altura que nos proporcionaron desde o cliclo de madeira. Fixemos varias medicións. Por suposto,  ningunha daba o mesmo.
Con todo, obtivemos un valor: 0,92 m de sombra. A esa mesma hora, a mesma medición do GDGSR Youssoufia foi de 0,63 m. Estes resultados permitían determinar o ángulo de incidencia do Sol nese momento sobre as dúas cidades.
Como se ve, suponse que os raios do Sol inciden paralelos sobre a Terra
Pensando un pouco, acharemos o ángulo α, que determinan as dúas vilas vistas desde o centro da Terra. Teñamos presente que o ángulo αY é igual ao ángulo YAB e que o αé igual ao EAB. Polo tanto α= αYーαE=arctan(0,92)ーarctan(0,62)=42,61ºー32,21º=10,4º

Agora temos que determinar a distancia entre A Estrada e Youssoufia. Seguro que Eratóstenes tivo máis problemas; nós fixémolo coa aplicación maps de google.
O resto xa é un simple problema de proporcionalidade directa.





Cosmos
A principios dos anos 80 emitiuse pola canle UHF da televisión a serie Cosmos, dirixida por Carl Sagan. O seguinte recorte do primeiro dos 13 capítulos da serie explica de forma maxistral o "experimento de Eratóstenes". Téñoo usado na clase unha chea de veces.



Un apunte personal
Xunto coa serie publicárase un libro do mesmo título. Nese libro é onde vin por primeira vez unha demostración matemática. Mellor dito, dúas.
No apéndice incluíase a demostración da irracionalidade da √2 e da existencia de únicamente 5 poliedros regulares. Leínas con moito interese, pero resultáranme realmente decepcionantes.
Para demostrar a irracionalidade da √2 partíase de suposición de que era un racional p/q irreducible para finalmente chegar a unha contradición. Teño que confesar que non entendía por que p/q tiña que ser irreducible. En consecuencia, nunca o expliquei na aula.
A outra demostración era directa, non se empregaba o método de redución ao absurdo, pero partía dunha fórmula completamente misteriosa para min, a fórmula de Descartes-Euler que relaciona o nº de caras (C), o nº de vértices (V) e o de arestas (A), dun poliedro (homeomorfo a unha esfera, diría hoxe):
C+V-A=2
No libro indicábase que había unha bonita demostración no libro de Courant e Robins, Que é a matemática?, (páx. 248), mais daquela non tiña posibilidade algunha de consultar ese libro, nin imaxinaba que algún día chegaría a lelo.
En conclusión, acabei convencido de que as matemáticas non eran para min.

Alumnado do IES Losada
tomando a medida da terra (literal)

terça-feira, 28 de março de 2017

Resolvendo un problema distinto do que quería resolver

Ao ver a entrada de Matemáticas na Rúa sobre un dos problemas da LII Olimpíada Matemática Española, sentín o ruxerruxe da curiosidade e boteille un ollo aos problemas. Chamoume a atención o enunciado do segundo problema porque restrinxía a operatividade a usar unha ferramenta que denominaba trazador de puntos medios:
Un trazador de puntos medios é un instrumento que debuxa o punto medio exacto de dous puntos previamente sinalados. Partindo de dous puntos a distancia 1 e utilizando só o trazador de puntos medios, debes obter dous puntos a unha distancia estrictamente comprendida entre 1/2017 e 1/2016 , trazando o menor número posible de puntos. Cal é o mínimo número de veces que necesitas utilizar o trazador de puntos medios, e que estratexia seguirías para lograr o teu obxectivo?
Non puiden poñerme a traballar nel inmediatamente. Comencei a facelo nunha garda na que (inusitado) non faltaba ningún profesor. Os ordenadores da sala de profesores estaban ocupados, así que ante a falta de perspectiva doutra diversión quixen meterlle o dente ao problema pero... non me acordaba do enunciado. Así que fixen memoria e así establecín o que pensaba que era o texto do segundo exercicio olímpico, pero que, realmente, era outro problema distinto:
Utilizando só o trazador de puntos medios, debes obter dous puntos entre p=1/2017 e q=1/2016 , trazando o menor número posible de puntos. Cal é o mínimo número de veces que necesitas utilizar o trazador de puntos medios, e que estratexia seguirías para lograr o teu obxectivo?
O primeiro paso é sempre explorar un pouco o problema. Se utilizamos o trazador 3 veces obtemos un conxunto de 7 novos puntos, todos os da forma:
$$\frac { a }{ { 2 }^{ 3 } } \quad \quad con\quad 1\le a\le { 2 }^{ 3 }-1$$

Eventualmente, algunhas das fraccións poden simplificarse.
Ademais a distancia entre un punto obtido no último paso e os máis próximos dos xa existentes no paso anterior é de 1/23 . E todo isto pode xeneralizarse para calquera valor do expoñente.
Púxenme a buscar un punto intermedio entre p e q. Xa vería despois como obter un segundo punto.
Para colmo de males, non tiña calculadora a man, así que estaba nas mesmas condicións que os sufridos participantes da olimpíada. Os primeiros cálculos:
$$p-q=\frac { 1 }{ 2016 } -\frac { 1 }{ 2017 } =\frac { 1 }{ 4056272 } $$
Debía buscar unha potencia de 2 da orde dos 4 millóns. Sabendo que 210=1024, e multiplicando este valor por si mesmo: 220=1048576, polo que multiplicando desta vez por 4: 222=4194304. Un número intermedio entre p e q:
$$\frac { 1 }{ 2016 } <\frac { a }{ { 2 }^{ 22 } } <\frac { 1 }{ 2017 } $$
Parece que había que realizar 22 operacións co trazador. Intentemos determinar o valor de a:
$$\frac { { 2 }^{ 22 } }{ 2016 } <\quad a\quad <\frac { { 2 }^{ 22 } }{ 2017 } $$
Facendo as divisións (a man): 2079'....< a < 20180'..... Velaí que a=2080. O punto intermedio será:

$$m=\frac { 2080 }{ { 2 }^{ 22 } } =\frac { { 2 }^{ 5 }\cdot 65 }{ { 2 }^{ 22 } } =\frac { 65 }{ { 2 }^{ 17 } } $$
Entón parece que chega con  utilizar o trazador 17 veces para obter un punto intermedio.
Aquí quedara.

Cando puiden volver a consultar o enunciado do problema das olimpíadas, decateime de que estivera traballando nun problema distinto. Poderían servir para algo os cálculos anteriores para resolver o problema orixinal? As divisións inacabadas anteriores eran tan axustadas que mostraban claramente que para atopar un punto que distara doutro do conxunto de puntos construídos co trazador un valor que estivera entre p e q precisabamos polo menos de 17 pasos. Agora ben. acababa de achar un punto, m, que distaba do 0 un valor, m, que caía dentro do pedido polo enunciado, pois m estaba ente p e q. Ademais, pola forma de obtención do punto, mediante o trazador, m equidista de 0 de de 2m, e resulta que  2m=65/216 era un punto obtido mediante o trazador xusto no paso anterior. Velaí que tiña os dous puntos pedidos. Así, traballando nun problema distinto, achara a solución do problema orixinal.
Queda aínda unha cuestión por responder, a da determinación dos pasos que hai que dar para chegar aos puntos pedidos, m e 2m. Está claro que basta con determinar a obtención de m, xa que 2m, tal e como se dixo, obteríase no paso anterior. Para iso basta decatarse de como escribir 65 como  potencias de 2:
$$\frac { 65 }{ 64 } =\frac { 64 }{ 64 } +\frac { 1 }{ 64 } =1+\frac { 1 }{ { 2 }^{ 6 } } $$
Sucesivamente, durante 7 utilizacións do trazador, obtemos os valores:
$$\frac { 1 }{ 2 } ,\quad \frac { 1 }{ { 2 }^{ 2 } } ,\frac { 1 }{ { 2 }^{ 3 } } \quad .....,\quad \frac { 1 }{ { 2 }^{ 6 } } $$
Despois calculamos o punto medio entre 1 e este último punto:
 $$\frac { 1 }{ 2 } \left( 1+\frac { 1 }{ { 2 }^{ 6 } }  \right) =\frac { 65 }{ { 2 }^{ 7 } } $$
Os seguintes 10 pasos consisten na bipartición reiterada deste último punto.
Cómpre comentar un último detalle. Dase a solución partindo do intervalo (0,1), non entre dous puntos calquera que disten 1. Pero isto, como é sabido, non inflúe no proceso nin na xeneralidade dos resultados obtidos.

Outro problema
Traballar con este problema levou que se me fixera presente outra cuestión. Pensemos nas potencias de 2. Máis arriba vimos que hai unha potencia de 2 que comenza por 102: 210=1024 e que hai outra que comenza por 104: 220=1048576.
Haberá algunha potencia de 2 que teña por primeiras cifras 103? Se a resposta é afirmativa,  haberá algunha potencia de 2 que comence por abcdef....., unha serie de cifras determinada calquera?

segunda-feira, 6 de março de 2017

"O universo matemático", apuntes para o bacharelato

Sacado de Xerais
O universo matemático. Das ideas e das técnicas é o segundo libro da colección de Xerais Básicos Ciencia. O propio autor, Antóm Labranha, explica moi claramente os parámetros baixo os que se move o texto:
Este libro trata os contidos matemáticos propios do bacharelato, intentando poñer de manifesto reflexións, habitualmente implícitas, acerca do sentido dos conceptos, das propiedades e das fórumas que utilizamos...
Como un anxo da garda, un espírito da xustificación percorre todo o libro. Para ilustralo vou centrarme nun aspecto concreto: nalgún punto do currículo aparece a distribución normal. Cuestión chea de espiñas é a de como presentar nunha aula a función de densidade desta ditribución: $$f\left( x \right) =\frac { 1 }{ \sqrt { 2\pi  }  } { e }^{ \frac { -1 }{ 2 } { x }^{ 2 } }$$ Pódese dicir que caeu do ceo, e a enorme extensión do currículo do bacharelato parece indicar que isto é o que se lle pide ao profesorado neste, e en moitos outros aspectos. Labranha presenta unha alternativa baixo o estudo natural da función exponencial y=ex. Ampliando, y=e-x2, un bo exemplo de función par, xenaralizando y=e-ax2, con a un número positivo calquera. A segunda derivada desta última función: $$y''=-2a{ e }^{ -a{ x }^{ 2 } }\left( 1-2a{ x }^{ 2 } \right) $$ lévanos a determinar que terá puntos de inflexión cando $$a=\frac { 1 }{ 2{ x }^{ 2 } } $$ Polo tanto, se os puntos de inflexión se deran cando x=+1 e x=-1 (lembremos que é par), teremos que forzar a que a=½, neste caso a función será y=e-½x2.. Cal será a área que garda esta función? Neste punto teremos que recorrer á análise multidemensional. O cálculo de $$\int _{ -\infty }^{ \infty }{ { e }^{ \frac { -1 }{ 2 } { x }^{ 2 } } } =\sqrt { 2\pi } $$ pode consultarse aquí. Finalmente, cando estamos á procura dunha función de densidade, bastará dividir a nosa última función por √2𝛑: $$f\left( x \right) =\frac { 1 }{ \sqrt { 2\pi  }  } { e }^{ \frac { -1 }{ 2 } { x }^{ 2 } }$$
Propostas para a aula
Estou afeito a explicar a regra de l' Hopital como unha consecuencia do teorema de Cauchy (teorema do valor medio xeneralizado). Labranha ofrece unha alternativa interesante, fundamentada na idea da recta tanxente a unha función nun punto como aproximación da función na veciñanza dese punto. Se partimos de dúas funcións f(x) e g(x), as respectivas rectas tanxentes nun punto x0, no que ambas as dúas función toman o valor cero:
f(x)≃ y=f''x0)(x-x0)
g(x)≃ y=g'(x0)(x-x0)
Polo tanto $$\lim _{ x\rightarrow { x }_{ 0 } }{ \frac { f\left( x \right)  }{ g\left( x \right)  }  } \simeq \lim _{ x\rightarrow { x }_{ 0 } }{ \frac { f'({ x }_{ 0 })(x-{ x }_{ 0 }) }{ g'({ x }_{ 0 })(x-{ x }_{ 0 }) } =\lim _{ x\rightarrow { x }_{ 0 } }{ \frac { f'({ x }_{ 0 }) }{ g'{ (x }_{ 0 }) } =\lim _{ x\rightarrow { x }_{ 0 } }{ \frac { f'\left( x \right)  }{ g'\left( x \right)  }  }  }  } $$ En varias ocasións Labranha aproveita para ofrecer unha presentación das ideas mediante valores heurísticos.Todo isto lévanos a unha aposta por alternativas ás clases autoritarias. En definitiva, estamos ante un libro pensado como complemento para afrontar o bacharelato que ben pode ser un punto de referencia para o profesorado da materia, un lugar do que partir para levar a cabo o traballo na aula.

sexta-feira, 10 de fevereiro de 2017

Un eodermdrome galego

Foi o artigo do blogue Xogos de lingua, Non apto para sesquipedalofóbicos, o que prendeu a chispa para que elaborase esta entrada. Xogos de lingua, tal como indica o seu nome, é un blogue adicado á ludolingüística. Como tal, ten algunha entrada na que fai referencia ao gran divulgador das matemáticas, Martin Gardner, coñecido por utilizar os xogos como punto de partida de moitos dos seus artigos. Velaquí o punto de encontro entre a lingua e as matemáticas: o xogo. No libro Rosquillas anudadas (Labor, 1987), Martin Gardner fai referencia a un famoso reto de Henry Dudeney, aparecido no libro Amusements in Mathematics: auga, gas e electricidade consistente en unir co lapis as casas A, B e C cos subministros de auga (W), gas (G) e electricidade (E) de forma que as liñas de subministro non se corten. Tal e como o propio Dudeney adianta, é imposible realizar o que se pide no reto:
Figura 1:Amusements in Mathematics
Este problema entra dentro do campo da teoría de grafos. Os matemáticos chámanlle grafo a unha colección de vértices con arestas entre os mesmos. Cada aresta conecta dous vértices. Velaquí un par de exemplos.
Figura 2. Dous grafos simples
Nota: aquí debuxei as arestas mediante segmentos rectos, pero non hai porque facelo así. O importante dunha aresta consiste nos vértices que conecta.
Figura 3:Grafo K5
Cómpre avisar que os únicos vértices do grafo son os marcados en cor. Neste grafo denominado K5  hai 5 vértices e 10 arestas.  O grafo completo de grao n, denotado Ké o un grafo de n vértices na que todo vértice está conectado con todos os demais vértices. Aquí presentamos o grafo completo de 5 vértices. Algunhas das arestas deste grafo crúzanse, o mesmo lle sucede ao grafo que representa o problema de Dudeney (cada unha das arestas superiores representa unha compañía subministradora e as inferiores representan as casas)
Figura 4: grafo K3,3
Na Figura 1 podemos ver como este grafo podería representarse con só un cruce, pero sería imposible facelo sen cruce ningún, niso consiste a imposibilidade da resolución do problema das tres casas. Os grafos que poden representarse sen cruces, como os da figura 2, chámanse grafos planares. Hai que ter en conta que nun grafo só nos interesa a forma en que están conectados os vértices, non esta ou aqueloutra representación particular. Para un grafo dado, sempre poderemos buscar a representación que teña o menor número posible de cruces. Na seguinte figura vemos como o grafo que está representado (á esquerda) con cruces, pode representarse (á dereita) sen cruces. Trátase, polo tanto, dun grafo planar.
Figura 5: Grafo planar
Hai unha forma de saber se un grafo é planar ou non grazas ao teorema de Kuratowski: se o grafo non contén ningún subgrafo K5 nin K3,3 será planar. Grafos de palabras Podemos combinar os grafos coas palabras conectando cada letra con aquelas ás que é adxacente. Se unha letra aparece repetida e consecutiva, non debuxamos aresta ningunha xa que consideramos a letra conectada consigo mesma. Por exemplo, as palabras touporroutou e nacionalismo terían os seguintes grafos asociados:
Figura 6
Figura 7
A pouco que un remexa nos grafos de palabras, decatarase de que prácticamente todos son planares. As palabras que dan lugar a grafos non planares chámanse eodermdromes. Por suposto, propia palabra eodermdrome é un eodermdrome (ver a figura 7). A. Ross Eckler elaborou no ano 1980 un dicionario de eodermdromes para a lingua inglesa. Martin Gardner cualificaba esta publicación como unha aplicación extravagante do estudo do número de cruces dun grafo fronte á indubidablemente interesante aplicación ao deseño de microcircuítos. Temos unha lista de eodermdromes en inglés pero, haberá algún en galego? As candidatas deben ter unha cantidade considerable de letras, canto máis longas, máis arestas terá o seu grafo e máis posibilidades haberá de que teña un cruce inevitable. Por iso, cando na  entrada de Xogos de lingua vin que se referenciaban as palabras máis longas do noso vocabulario, púxenme a comprobar se entre elas había algún eodermdrome.  O grafo correspondente á palabra máis longa, esternocleidomastoideo, é o seguinte:
Figura 8
Como podemos observar, esternocleidomastoideo é planar. Tamén o son preterintencionalidade, contrarrevolucionario, electroencefalografía ou incluso hipopotomonstrosesquipedaliofobia. Pero a outra palabra, extraterritorialidade contén un subrafo K3,3,, o que establece todas as arestas entre os dous conxuntos de vértices {t,r,d} e {i,a,e}. Por fin, aquí temos un eodermdrome da nosa lingua:
Figura 9
Haberá outros? Existirá algún que conteña un subrafo K5? As arestas destes grafos representan un par de letras adxacentes. Cales serán as arestas máis frecuentes en galego?, e noutras linguas? Poderán determinarse a lingua en que vén redactado un texto estudando o tipo de arestas máis frecuentes do mesmo? Todo un extravagante campo de traballo  para a lingüística informática.

segunda-feira, 6 de fevereiro de 2017

Problema para reflexionar

Batín estes días con este problema e non resistín compartilo. Así que aquí o deixo.
Dado un ángulo agudo determinado polas semirectas r e s e un punto Q situado no seu interior, achar un punto R na recta r e outro S na recta s de forma que o triángulo QRS sexa o de perímetro mínimo.

Nota: creo que xa din bastantes pistas para resolvelo.

quinta-feira, 12 de janeiro de 2017

Nunca lle digas nunca máis a Alcuíno

Hai un par de meses traía por aquí unha referencia a Alcuíno de York. Aínda que non o explicitaba tiña a seguridade de que nunca máis volvería a remexer sobre tal personaxe. Velaquí a proba de que estaba completamente equivocado. Non só iso, senón que agora que volvo a escribir unha entrada sobre Alcuíno, fágoo cun problema ao que xa fixen referencia, (xa contarei a razón). Velaquí o seu enunciado:
12. Problema dun pai e o os seus tres fillos. Un certo pai de familia, ao morrer, deixou aos seus tres fillos unha herdanza de 30 botellas de vidro, dez delas estaban completamente cheas de aceite. Outras dez mediadas. As últimas dez baleiras. Divida quen poida, aceite e botellas, de tal modo que cada un dos tres fillos obteña o mesmo, tanto de vidro como de aceite.
Se nos poñemos á obra, podémoslle chamar xi ás incógnitas que nos indican o número de botellas cheas, yi ao número de botellas mediadas e finalmente zi ao de botellas baleiras; onde i pode tomar os valores 1, 2 ou 3 e identificar a cada un dos fillos. Deste xeito podemos establecer os seguintes conxuntos de ecuacións:
I. Hai 10 botellas de cada clase:
$$(I)\begin{cases} { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=10 \\ { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }=10 \\ { z }_{ 1 }+{ z }_{ 2 }+{ z }_{ 3 }=10 \end{cases}$$
II. Cada un dos fillos leva 10 botellas:
$$(II)\begin{cases} { x }_{ 1 }+{ y }_{ 1 }+{ z }_{ 1 }=10 \\ { x }_{ 2 }+{ y }_{ 2 }+{ z }_{ 2 }=10 \\ { x }_{ 3 }+{ y }_{ 3 }+{ z }_{ 3 }=10 \end{cases}$$
III. En total hai 15 litros de aceite, polo que cada fillo levará 5 litros.
Por exemplo, o primeiro levará x1+½ y1 =5, ou o que é o mesmo 2x1 +y1 =10. Polo que teremos:
$$(III)\begin{cases} { 2x }_{ 1 }+{ y }_{ 1 }=10 \\ { 2x }_{ 2 }+{ y }_{ 2 }=10 \\ { 2x }_{ 3 }+{ y }_{ 3 }=10 \end{cases}$$
Restando ecuación a ecuación as de II e III obtemos as igualdades: xi=zi, isto é, cada un dos fillos leva tantas botellas cheas como baleiras.
Todo isto, aínda que non o escribira,  xa o fixera na anterior entrada. Daquela, neste punto adicárame a estudar o sistema de 6 ecuacións que quedara para obter todas as posibles solucións (enteiras positivas) do problema. A novidade, e a razón de traer outra vez por aquí o problema, nun principio pode parecer algo anódina. Comparemos a 1ª ecuación de I coa 1ª de III. Obteremos que
$${ x }_{ 2 }+{ x }_{ 3 }={ x }_{ 1 }+{ y }_{ 1 }$$
Como y1 ≥ 0 temos que x2 +x3 ≥ x1. Análogamente chegamos a este grupo de desigualdades:
$$\begin{cases} { x }_{ 2 }+{ x }_{ 3 }\ge { x }_{ 1 } \\ { x }_{ 1 }+{ x }_{ 3 }\ge { x }_{ 2 } \\ { x }_{ 1 }+{ x }_{ 2 }\ge { x }_{ 3 } \end{cases}$$
que é característica defintitoria dun triángulo (x1, x2, x3) que pode ser dexenerado. Si! as solucións do problema de Alcuíno son triángulos!. Con esta nova idea na faltriqueira é máis fácil chegar a todas as solucións do problema. Basta con ir escribindo ordenadamente todas as formas de construír eses triángulos:
Neste caso o número de solucións é 5. Ademais vese claramente que unha vez establecida a repartición das botellas cheas, o resto das incógnitas quedan perfectamente determinadas. Polo tanto chega con estudar os valores dos triángulos (x1, x2, x3).
Xeneralicemos, consideremos o problema de Alcuíno con n botellas de aceite de cada clase. Se lle chamamos T(n) ao número de solucións do problema de Alcuíno con n botellas, acabamos de ver que T(10)=5. A canto ascenderá o seguinte valor T(11)? De construirmos unha táboa coma a anterior:

Veremos que T(11)= 4.
Podemos calcular  cal será o valor xeral de T(n)? A resposta é si, e a solución é realmente sorprendente. Obterémola precisamente da caracterización como triángulo das solucións do problema. Na última táboa obtivemos os valores dos triángulos (x1, x2, x3) de perímetro 11. Ademais neste caso non había triángulos dexenerados. Chamémoslle t(n) ao número de triángulos non dexenerados de perímetro n. Pódese determinar t(n)?
Noutras palabras, chegamos a un novo problema con entidade propia, a de determinar o número de triángulos (non dexenerados) de perímetro n. E outra cousa, este problema pode abrirnos algunha porta para determinar T(n)? A resposta a ambas cuestións é afirmativa. Primero explicitaremos o valor de t(n), xa indicaremos máis adiante de onde o sacamos.
$$t(n)=\begin{cases} \left\{ \frac { { n }^{ 2 } }{ 48 }  \right\} \quad \quad \quad \quad se\quad n\quad par \\ \left\{ \frac { { \left( n+3 \right)  }^{ 2 } }{ 48 }  \right\} \quad \quad se\quad n\quad impar \end{cases}$$
onde {x} indica o enteiro máis próximo a x.
Se n é impar vai suceder como no caso n=11, será imposible obter triángulos dexenerados dese perímetro. Efectivamente, se temos un triángulo dexenerado: x1+x2=x3polo que n=x1+x2+x3=2x3 (n ten que ser par). Entón T(n)=t(n) para os valores impares de n.
Que pasa cos valores pares? Sexa (x1, x2, x3) un triángulo eventualmente dexenerado de perímetro par n, entón (1+x1, 1+x2, 1+x3) é un triángulo non dexenerado de perímetro n+3. Ademáis, valores distintos do primeiro, dan lugar a valores distintos do segundo e todos os triángulos de perímetro n+3 proceden, mediante esta correspondencia, dalgún dos eventualmente dexenerados de perímetro n. En conclusión, para os valores pares T(n)=t(n+3). Por fin temos determinada a función T(n):

$$T(n)=\begin{cases} \left\{ \frac { \left( n+6 \right) ^{ 2 } }{ 48 }  \right\} \quad \quad se\quad n\quad par \\ \left\{ \frac { { \left( n+3 \right)  }^{ 2 } }{ 48 }  \right\} \quad \quad se\quad n\quad impar \end{cases}$$

A sucesión de Alcuíno
Curiosamente os matemáticos deron en chamarlle sucesión de Alcuíno a t(n), e non a T(n). Queda por ver de onde sacamos a expresión da sucesión de Alcuíno (OEIS A005044)  cuxos primeiros termos son os seguintes:

En primeiro lugar poñemos cada triángulo (x1, x2, x3) como suma de (1,1,1) e unha combinación linear dos triángulos (0,1,1), (1,1,1) e (1,1,2) :
$$({ x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 })=(1,1,1)+\alpha(0,1,1)+\beta(1,1,1)+\gamma(1,1,2) \quad$$
É fácil demostrar a partir da igualdade
$$\begin{cases} { x }_{ 1 }=1+\beta +\gamma  \\ { x }_{ 2 }=1+\alpha +\beta +\gamma  \\ { x }_{ 3 }=1+\alpha +\beta +2\gamma  \end{cases}$$
que para cada triángulo  (x1, x2, x3) existe unha única solución (𝜶,𝜷,𝜸). Sumando obtemos:
$$n={ x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=3+2\alpha +3\beta +4\gamma $$
De aí que t(n) sexa o número de formas de obter n-3 como sumas nas que os sumandos sexan os números 2, 3 ou 4. Por exemplo, no caso n=10: n-3=7. As únicas dúas formas de obter un 7 como sumas dos elementos 2, 3 e 4 son:
7=2+2+3=4+3
No caso de n=11: n-3=8
8=2+2+2+2=2+2+4=2+3+3=4+4
Do que se trataría sería de estudar a función racional seguinte, xa que o seu desenvolvemento en serie de potencias ten como coeficientes precisamente os elementos da sucesión t(n).
$$\sum_{n=0}^{\infty}t(n)x^n=\frac{x^3}{(1-x^2)(1-x^3)(1-x^4)}$$
As liñas xerais desta demostración poden consultarse nesta páxina do (prodixioso) portal de Martin Erickson.
Quizais o método demostrativo poida parecer rebuscado, pero non fai máis que seguir unha tradición que vén dunha xenialide de Leonard Euler que se explica neste libro de William Dunham.
En liñas xerais a cuestión que estudou  Euler e a forma de tratala, foi o seguinte:
Sexa D(n) o número de formas de escribir n como suma de naturais diferentes
Sexa $$P\left( x \right) =\left( 1{ +x } \right) \left( 1+{ x }^{ 2 } \right) \left( 1+{ x }^{ 3 } \right) ......=\sum _{ n=0 }^{ \infty  }{ D\left( n \right)  } { x }^{ n }$$
onde tomamos D(0)=1
Sexa I(n) o número de formas de escribir n como suma de naturais impares
Sexa $$Q\left( x \right) =\frac { 1 }{ 1-x } \frac { 1 }{ 1-{ x }^{ 3 } } \frac { 1 }{ 1-{ x }^{ 5 } } .....=\sum _{ n=0 }^{ \infty  }{ I\left( n \right)  } { x }^{ n }$$
onde tomamos I(0)=1.
Entón Euler explica como P(x)=Q(x), do que deduce a igualdade de todos e cada un dos termos do desenvolvemento en serie de potencias de cada unha destas funcións: D(n)=I(n) ∀n∊N. Isto é, que o número de formas de escribir un número como suma de diferentes enteiros coincide co número de fomas de escribilo como suma de impares, cuestión, por certo, nada obvia.
Para collerlle o pulso do que estamos falando cómpre ter a man algún caso particular. Velaquí as 12 formas de obter o número 11:
Poderíamos formar dous grupos na aula que xogaran a quen é quen de formar máis sumas. Un dos grupos usaría sumandos distintos e o outro sumandos impares. Non se pode dicir que o reto non é equitativo. Con esta proposta podemos destacar a importancia de ser ordenados e sistemáticos na análise dun problema.

Visto todo o anterior, agora xa non me atrevo nin a pensar que nunca volverei a atoparme con Alcuíno. Ademais temos a mostra de como profundizando un pouco nun problema de apariencia bastante banal, podemos, como neste caso, atoparnos coa sorpresa dunhas matemáticas realmente gorentosas. E como premio, chegamos a un lugar para cheo de matemáticas fermosas, o portal de Martin Erickson. Que máis se pode pedir?