O que sempre se mantiveron as autoridades educativas nesa mesma materia foron os contidos da xeometría plana (o espazo vectorial R2, o espazo afín coas ecuacións da recta,e o espazo euclidiano coa introdución do produto escalar e a corresponte métrica asociada...). Este curso, ao tratar este tema na aula quixen que polo menos enxergaran as razóns de por que lles explicaba cal era a idea abstracta de espazo vectorial. Como o asunto vai moi forzado, introducín a cuestión falándolle dun dos máis grandes matemáticos do XX: Nicolás Bourbaki. Unha das súas teimas máis coñecidas era a concebir as matemáticas a partir dunha idea fundamental, a de estrutura. Con algo de sorna pedinlle ao alumnado que me trouxeran ao día seguinte algunha intmidade de Bourbaki (como a da data de nacemento, morte, se casara, tivera fillos... ). Non imaxinaba eu que moitos deles xa tiñan a resposta moito antes de rematar a clase...Malditos móbiles!
MIR, mágoa de editorial |
O que segue débese esencialmente a este libro, El universo tetradimensional de Minkowski, de A. A. Sazánov, daquela marabillosa (e barata) editorial, a MIR.
Xeometría de Minkowski
Dado o espazo vecvtorial R2, definimos a seguinte especie de produto escalar:
Segundo esta definición o produto escalar é bilinear, simétrico, pero non está definido positivo.
As rectas x=±y chámanse rectas isótropas. Estas rectas dividen o plano en catro sectores (esquerdo, dereito, superior e inferior).
A cónica unidade non será a circunferencia, senón as hipérbolas que teñen por asíntotas as rectas isótropas.
O produto escalar danos a condición de perpendicularidade:
Se lle chamamos m1 á pendente da recta que pasa pola orixe e polo punto (x1 ,y1) e m2 á pendente da recta que pasa pola orixe e polo punto (x2 ,y2) non sería mal exercicio para este nivel (1º de bacharelato) preguntar polo significado xeométrico da relación que se estabelece na liña anterior entre m1 e m2. Xa o adianto: as rectas de pendente m1 e m2 serán simétricas respecto de y=x pois son funcións inversas a unha da outra. Velaí que no plano de Minkowski a ortogonalidade tradúcese en simetría respecto da gráfica da función identidade.
Con todo, o máis divertido está por chegar e resulta do cáculo de módulos a partir da definición do produto escalar minkowskiano.
![]() |
Imase 1. Os catro sectores do plano de Minkowski |
Polo tanto o módulo dos vectores situados nos sectores esquerdo e dereito será un número real e o dos outros sectores será un imaxinario puro. Así o primeiro par de sectores recibe o cualificativo de reais e o segundo par o de imaxinario.
E que sucede cos ángulos? Partamos da coñecida fórmula:
![]() |
Imaxe2. Ángulos |
Idem co sector superior. Velaquí o coseno do ángulo dun vector (x,y) deste sector co vector (0,1):
Este valor é tamén un número real maior ou igual que 1.
Ao tomar límites cando o vector ū se aproxima ás isótropas (x=y ou x=-y), os cosenos anteriores tenden a +∞ ou - ∞. Este panorama ten o seu desenvolvemento natural coa extensión complexa da función coseno:
Como os valores dos cosenos obtidos anteriormente son sempre reais, os ángulos anteriores serán da forma iφ, con φ∈R. Así
En consecuencia teremos as seguintes fórmulas:
Só por ver estas fórmulas merecía que se desenvolvese a idea do plano de Minkowski.
Cambio de base ortonormal
Consideraremos un cambio entre unha base {e1, e2} e outra {e'1, e'2}. Onde os vectores que comparten o mesmo índice estean no mesmo sector e de forma que cada base estea formada por un par de vectores ortonormais.Visto o anterior, a ninguén lle extrañará que a matriz de cambio de entre bases teña a seguinte expresión:
Polo tanto o cambio de coordenadas entre dous sistemas de referencia ortornormais verificarán a igualdade:
Unhas poucas contas máis:
Ben, xa temos unha chea de fórmulas, e agora que?
A transformación de Lorentz
Na mecánica clásica, se consideramos dous sistemas de referencia que se moven, un respecto ao outro, cunha velocidade v, a tranformación de coordenadas (chamada de Galileo) é a seguinte:
Esta transformación permítenos estudar o movento nun sistema de referencia que se mova con velocidade constante a respecto doutro. Este cambio de coordenadas caracterízase porque a medida do tempo é independente do sistema de referencia e na invariancia da lonxitude dunha barra OP respecto do sistema de referencia. Se falamos de relatividade galileana estamos indicando que podemos intercambiar o que se move con velocidade constante e o que está en repouso.
A teoría da relatividade einsteniana introdúcese coa transformación de Lorentz. O movemento relativa de dous sistemas de refencia virá dado polas fórmulas:
Que son esencialmente as mesmas fórmulas do cambio de coordenadas ás que chegaramos anteriormente. Basta con considerar:
Contraccións e simultaneidade
![]() |
Imaxe 3 |
E así deducimos a coñecida contración do tempo na dirección do movemento:
![]() |
Imaxe 4 |
Isto ten que ver coas sorpresas que descubriu a teoria da relatividade respecto da simultaneidade. Dise que dous sucesos son simultáneos respecto dun sistema de referencia se a súa segunda coordenada é a mesma nese sistema. Na imaxe 4 temos que P e N son simultáneos no sistema XY; P e Q son simultáneos nun sistema X'Y' dun móbil con velocidade v respecto do considerado no sistema XY.
![]() |
Imaxe 5 |
Efectivamente, cando medimos a lonxitude dunha barra estamos considerando que calculamos a diferenza entre os seus extremos simultáneamente.
Dada unha barra de lonxitude l=|OL| respècto do sistema XY, se a medimos respecto de X'Y', debemos facelo simultáneamente respecto este sistema, entón a súa lonxitude será l'=|OL'|.
Entón podemos explicar así a contracción dunha barra de lonxitude l en movemento
Relatividade visual
Quen queira seguir remexendo nos aspectos xeométricos da teoría da relatividade, ademais de recomendarlle o libro de Sazánov, pode botarlle un ollo ao portal de Xabier Prado Orbán, Relatividade visual
Ningún comentario:
Publicar un comentario