Amosando publicacións coa etiqueta ESO. Amosar todas as publicacións
Amosando publicacións coa etiqueta ESO. Amosar todas as publicacións

luns, 12 de maio de 2025

Os logaritmos

Introdución aos logaritmos

Vou facer unha confesión terrible. Eu fixen a carreira de Matemáticas sen saber o que eran os logaritmos. Así aprendín que non hai que botar as mans á cabeza cando alguén descoñece un concepto fundamental, sempre e cando teña ferramentas que lle permitan esquivar esta eiva. En efecto, tiña que ter estudado os logaritmos cando cursei 2º de BUP. O profesor explicáranolos pero como foi a final de curso decidiu non facer exame. A pesar de que daquela tiña xa certa querencia pola materia, non mirei nin a primeira vez os apuntes. Así aprendín que se un quer forzar o estudo dun tema, debe telo en conta á hora de avalialo. 

Ao ano seguinte tiven outro profesor que supuxo que todos tiñamos adquiridos os fundamentos dos logaritmos así que cando lle tocou presentarnos a función logarítmica fíxoo de súpeto. Con todo, tivo a boa idea de escribir no encerado as propiedades fundamentais dos logaritmos. A partir dese momento para min os logaritmos eran iso, unha función que verificaba unhas curiosas propiedades.

Con estes antecedentes o día que me tocou a min explicar o que eran os logaritmos enfronteime a un gran problema; antes tiña que sabelo eu. Así que tiven que estudalo por vez primeira. Todas estas circunstancias leváronme a ter que reflexionar moito sobre o seu concepto. Tiña a man moitos libros de texto, pero nunca cheguei a usalos na aula, entre outras razóns porque normalmente os libros de texto non viñan escritos en galego. En todo caso, incluso no breve lapso de tempo no que dispoñiamos de textos de Matemáticas en galego, nunca fun quen de adaptarme á súa prosodia. Pode que sexa defecto meu, non o nego. Con todo prefiro contar as cousas da mesma maneira que me gustaría que mas contaran a min. Sempre perdín moito tempo en intentar ser o máis coidadoso na escolla das palabras e as ideas para as explicacións. De seguido conto como explico en que consisten os logaritmos. Normalmente fágoo en 4º da ESO, aínda que dependendo das circunstancias, pode que teña que adiar o relato para o curso seguinte. 

En primeiro lugar presento unha táboa de potencias de 2 como a seguinte

$n$ $2^{n}$$n$ $2^{n}$$n$ $2^{n}$$n$ $2^{n}$
$0$ $1$ $8$ $256$ $16$ $65.536$ $24$ $16.777.216$
$1$ $2$ $9$ $512$ $17$ $131.072$ $25$ $33.554.432$
$2$ $4$ $10$ $1.024$ $18$ $262.144$ $26$ $67.108.864$
$3$ $8$ $11$ $2.048$ $19$ $524.288$ $27$ $134.217.728$
$4$ $16$ $12$ $4.096$ $20$ $1.048.576$ $28$ $268.435.456$
$5$ $32$ $13$ $8.192$ $21$ $2.097.152$ $29$ $536.870.912$
$6$ $64$ $14$ $16.384$ $22$ $4.194.304$ $30$ $1.073.741.824$
$7$ $128$ $15$ $32.768$ $23$ $8.388.608$ $31$ $2.147.483.648$
$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$

Nesta táboa hai que ler as columnas de dúas en dúas. Na columna da esquerda aparece un número $n$ e na segunda o resultado de elevar 2 a ese número, $2^{n}$. Pero tamén podemos ler as columas de dereita a esquerda, así os números da columna da esquerda son os logaritmos en base 2 dos da  correspondente columna da dereita. 

Por exemplo, como $2^{5}=32$ diremos tamén que o $log_2{32}=5$ (o logaritmo en base $2$ de $32$ é $5$).

Cálculo de produtos

Por unha vez imos ter unha clase sen calculadora. Pensemos, por poñernos en situación, que estamos no século XVI. A pesar de non ter calculadora vémonos na obriga de calcular un produto. Non é difícil pero é bastante pesado. Por iso imos intentar simplificar os cálculos facendo uso da táboa das potencias de 2 (ou dos logaritmos en base 2). Queremos calcular o produto $512\cdot8.192$. Para iso debemos buscar na táboa os seus logaritmos. Neste caso o $log_{2}812=9$ e o $log_{2}8.192=13$. Estamos vendo que os logaritmos non son outra cousa que os expoñentes. Agora vén o truquiño. Sumamos os logaritmos $9+13=22$ (se prefires podemos dicir que sumamos os expoñentes) e agora miramos na táboa buscando nas columnas de esquerda o valor $n=22$, daquela o produto é xusto o seu compañeiro da columna da dereita: $512\cdot8.192=4.194.304$. A razón é ben simple:

$$512\cdot8.192=2^{9}\cdot 2^{13}=2^{9+13}=2^{22}=4.194.304$$

Acabamos de ver que os logaritmos transforman os produtos en sumas. Isto é lóxico porque os logaritmos son expoñentes e para calcular o produto de dous números coa mesma base, sumamos os expoñentes. Escrito máis estritamente

$$log_{2}\left( M\cdot N \right)=log_{2}M+log_{2}N$$

No noso caso: $$log_{2}\left( 512\cdot 8.192 \right)=log_{2}512+log_{2}8.192$$

ou $$9+13=22$$


Cálculo de divisións

Continuamos no século XVI (sen calculadoras). Se o procedemento do cálculo de divisións é bastante tedioso e pesado, a realización de divisións a man consiste nun algoritmo que multiplica estas dificultades. Estamos pensando en facer unha división usando números bastante grandes. Os logaritmos, isto é, os expoñentes, volverán a simplificarnos as cousas. Se o cálculo de produtos (complicados) se reduciu ao de sumas (fáciles) é lóxico que o cálculo de divisións (moi complicadas) se reduza a unha (simple) resta. Por exemplo, para facer a división $8.192: 512 $ chega con restar os logaritmos destes números. Vexámolo: $13-9=4$. Velaí que o resultado da división será o número que na táboa lle asignamos ao $4$, isto é $16$. Repasemos as razóns de que isto sexa así:

$$\frac{8.192}{512}=\frac{2^{13}}{2^{9}}=2^{13-9}=2^{4}=16$$

Escribamos estas ideas en forma de logaritmos:

$$log_{2}\left( \frac{M}{N} \right)=log_{2}M-log_{2}N$$

$$log_{2}\left( \frac{8.192}{512} \right)=log_{2}8.192-log_{2}512$$

$$13-9=4$$

Isto é, os logaritmos transforman as divisións en restas.

Chegou o momento de facer uns exercicios para practicar o cálculo de produtos e divisións mediante o uso de logaritmos. Axudarémonos da táboa (de logaritmos) que presentamos máis arriba.

1. Calcula $128\cdot 131.072$

2. Calcula $2.048\cdot 4.096$

3. Calcula $2.097.152 : 131.072$

4. Calcula $262.144 : 256$

5. Calcula $ 129 \cdot 127$ 

6. Calcula $154 \cdot 8744$ 

Non, non me equivoquei no último. Xa o explicarei noutra entrada.

venres, 11 de decembro de 2020

Problemas británicos.2. Segunda etapa da ESO

Na entrada anterior fixemos unha escolma de problemas recollidos no libro "The ultimate mathematical challenge", da UKMT que se adaptaban á abordaxe por alumnado dos dous primeiros cursos da ESO. A maior parte dos problemas dese libro están dirixidos a alumnos dos dous últimos cursos da ESO. Aquí  recóllense algúns deles.

Por norma xeral os problemas das competicións da  UKMT non son nos primeiros que pensamos para levar a unha aula pois normalmente precísase certo entrenamento nas cuestións que se abordan ou ben non son acaídos para a maior parte do alumnado. Non sucede isto co seguinte problema, con moi bo encaixe en calquera clase na que se traballe o uso dos radicais e que ten un sabor distinto ao habitual que se presenta nos libros de texto.

Raíces cadradas. Cantos dos seguintes números son maiores que 10?$$3\sqrt { 11 } \quad \quad 4\sqrt { 7 } \quad \quad 5\sqrt { 5 } \quad \quad 6\sqrt { 3 } \quad \quad 7\sqrt { 2 } $$

Moitas veces a fermosura dun problema está na súa simplicidade na redacción.

Unha media. A media de 16 números enteiros positivos distintos é 16. Cal é o maior valor que pode ter un deses 16 números?

De seguido algunhas cuestións de móbiles, desas de velocidades, tempos e espazos. O problema do tren é un deses clásicos que todos debemos ter gardado nalgún cartafol.

Aimee vai ao traballo. Todos os días Aimee sube nunhas escaleiras mecánicas para a súa xornada de traballo. Se fica quieta, este percorrido lévalle 60 segundos. Un día que a escaleira estaba avariada levoulle 90 segundos. Cantos segundos lle levaría subir se usa as escaleiras mecánicas mentres sube á mesma velocidade que o día da avaría?

A velocidade do tren. Un tren que viaxa a velocidade constante tarda 5 segundos en pasar completamente a través dun túnel de 85 m. de lonxitude e 8 segundos en pasar completamente a través dun segundo túnel de 160 m. Cal é a velocidade do tren?


Tamén se poden propoñer problemas de máximos e mínimos fóra do contexto do cálculo diferencial.

Unha pirámide de cubos. Katia escribe diferentes enteiros positivos na cara superior dos 14 cubos da pirámide. A suma dos nove números dos cubos da parte inferior é 50. O enteiro escrito en cada un dos cubos do medio e no superior son iguais á suma dos enteiros dos catro cubos sobre os que se asenta. Cal é o maior enteiro que se pode escribir no cubo superior?

Cantas fichas? Barbara quer colocar fichas nun taboleiro 4х4 de forma que o número de fichas en cada fila e en cada columna sexa diferente. (Pode colocar máis dunha ficha en cada cela e unha cela pode quedar baleira). Cal é o menor número de fichas que precisa?

Os seguintes son os habituais problemas de enunciado, pero cada un deles garda o seu tesouro. Por exemplo, neste primeiro non se pregunta pola cantidade de cartos que teñen os protagonistas.

Compartindo cartos. Rosalía deulle a metade dos seus cartos a Amancio. Entón Amancio deulle unha terceira parte do que tiña a Rosalía. Cada un deles acabou coa mesma cantidade de cartos. Acha a razón entre os cartos que tiñan cada un dos dous ao principio.

Cantos campistas? Na cea dunha xornada de acampada, cada lata de sopa foi compartida entre dous campistas, cada lata de albóndegas foi compartida entre 3 campistas e cada lata de mexillóns foi compartida entre 4 campistas. Todos e cada un dos campistas comeu das tres viandas e tomaron todas as latas. O monitor do cámping abriu un total de 156 latas. Cantos campistas participaban na xornada?

Cans e gatos. Na miña vila o10% dos cans pensan que son gatos e o 10% dos gatos pensan que son cans. Todos os outros cans e gatos son conscientes da súa identidade. Cando todos os gatos e cans foron sometidos a un rigoroso test, o 20% deles pensaban que eran gatos. Cal é a verdadeira porcentaxe de gatos de entre todos eles?

Cartas a Newton. Un luns na vila de Newton o carteiro deixa unha, dúas, tres ou catro cartas en cada unha das casas. O número de casas que recibiron catro cartas é sete veces o das que recibiron unha, e o número das que recibiron dúas é cinco veces o das que recibiron unha. Cal foi a media do número de cartas que recibiu cada casa?

Un par de problemas nos que os protagonistas son os números.

Dous cadrados. Un cadrado ten catro díxitos. Cando cada díxito se incrementa en 1 fórmase outro cadrado. Cales son os dous cadrados?

Un produto enteiro. Para que naturais o seguinte produto é enteiro? $$\left( 1+\frac { 1 }{ 2 }  \right) \left( 1+\frac { 1 }{ 3 }  \right) \left( 1+\frac { 1 }{ 4 }  \right) ...\left( 1+\frac { 1 }{ n }  \right) $$

Finalmente, unha colección de problemas xeométricos.

Unha área cadrada. Un octógono regular está inscrito nun cadrado, como se mostra na figura. O cadrado sombreado conecta os puntos medios de catro lados do octógono. Que fracción do cadrado exterior está sombreada? 




Un ángulo nun cadrado.O diagrama mostra un cadrado ABCD e un triángulo equilátero ABE. O punto F está en BC e verifica que EC=EF. Calcula o ángulo BEF.




 Estrañamente o título que lle dan na UKMT ao seguinte problema é "unha área sombreada".



Unha razón entre áreas. Un círculo está inscrito nun cadrado e un rectángulo está dentro do cadrado pero fóra do círculo. Dous dos lados do rectángulo están sobre dous lados do cadrado e un dos seus vértices toca á circunferencia, tal e como se ve na imaxe. A altura do rectángulo é o dobre da súa base.

Cal é a razón entre a área do cadrado e a do rectángulo?

 


Un círculo en Salt's Mill. O marco dunha fiestra en Salt's Mill consiste en dúas semicircunferencias iguais e nunha circunferencia inscrita nunha gran semicircunferencia tanxente ás outras tres tal e como se mostra. A lonxitude do marco é de 4 metros. Cal é o raio exacto da circunferencia?

O derradeiro encantoume. Usualmente nos problemas xeométricos pregúntase polo valor da área sombreada. Aquí é este precisamente o dato.


 A lonxitude dunha corda. A área sombreada é 2π. Cal é a lonxitude de AB?




Ben sei que nesta escolma están máis ben as miñas preferencias e prexuízos. Pero iso sucede con todas. A pesar disto, vou seguir insistindo no tema e na na seguinte entrega tócalle a quenda aos problemas para o Bacharelato.


mércores, 9 de decembro de 2020

Problemas británicos.1. Primeira etapa da ESO

A United Kingdom Mathematics Trust (UKMT) é unha asociación que mantén as diversas competicións escolares de matemáticas. Tamén publican libros sobre as mesmas. Un deles, The ultimate mathematical challenge (Harper-Collins 2018) é unha recompilación de 366  problemas pensados para rapaces do ensino secundario. O que vou facer aquí é unha escolma desa recompilación. Nesta entrada centrareime nos problemas para a primeira etapa da ESO (se a alguén lle renxe esta denominación por non ser oficial ou non corresponderse coa actual lei educativa, que pense que estamos a falar de 1º e 2º da ESO). A adscrición dos problemas a cada etapa foi feita atendendo á que fan os propios organizadores das competicións. Cada unha delas está pensada para alumnado de determinada idade, aínda que esta clasificación nunca pode ser estricta pois cabe a posibilidade de solapamento entre as distintas etapas etarias. Ademais cómpre ter en conta que o nivel de dificultade de distintas probas pode variar.  
Aínda que o libro nos fornece moito material, moi diverso, e moi agradecido, tampouco faltan uns poucos exemplos de problemas decepcionantes. Estou a falar de problemas "de libro de texto" pero que un nunca esperaría ver nun libro coma este. Van un par de exemplos.

Pepa fai unha visita aos avós. Pasa a metade do tempo xogando, un terzo durmindo e os 35 minutos restantes comendo. De canto tempo foi a visita?

Se un imaxina o seguinte problema non pode deixar de ver algo de estraño na situación. Menos mal que Benxamín se sube aos ombros e non se coloca directamente no curuto da testa do irmán. 

A sombra de Benxamín. Á tardiña Benxamín, que ten un metro de altura, proxecta unha sombra de 3 metros. Se Benxamín se sube sobre os ombros do seu irmán, que están a 1,5 metros sobre o chan, canto medirá a sombra que Benxamín e o seu irmán proxectan?


Primeira etapa da ESO 

De seguido recollo algúns problemas aparecidos en convocatorias para rapaces que estarían estudando nos dous primeiros cursos da ESO. 

Sumas de díxitos. Cantos números de tres díxitos hai tales que a suma deses díxitos sexa 25?

Tanto o anterior coma o seguinte teñen a enorme vantaxe de ofrecernos unha porta aberta a moitas outras pesquisas.



Cantos lados? Un polígono simple faise unindo os puntos do xeoplano con segmentos que só coinciden nos vértices. Ningún punto está en máis de unha esquina. O diagrama mostra un exemplo dun polígono de 5 lados. Cal é o maior número de lados dun polígono que se pode formar unindo os puntos deste xeoplano 4х4 con esas regras?


O reloxo da profesora Fungueiriño. O reloxo da profesora Fungueiriño adianta 16 minutos cada día. Despois de que ela poña o reloxo en hora, cantos días pasarán ata que volva a ter a hora correcta?

O valor de n. Sábese que n é un enteiro positivo tal que se lle engadimos n á suma dos seus díxitos, o resultado é 313. Cales son os posibles valores de n?

O seguinte é un exemplo de como dándolle a volta a un problema estándar, podemos chegar a un enunciado moi enriquecido 


O perímetro dun cadrado.O diagrama mostra un cadrado que foi dividido en cinco rectángulos congruentes. O perímetro de cada rectángulo é de 51 cm. Acha o perímetro do cadrado.



Hai varios exemplos de problemas do mesmo estilo que o seguinte, nos que se ofrece unha operación con símbolos que hai que pescudar. Non é un tipo de cuestións que me agraden, pero este tiña o seu punto.

Unha suma poligonal. Na seguinte suma, polígonos diferentes representan cifras diferentes. Acha o valor do cadrado. 





 Creo que nunca vin un problema protagonizado por un nonágono. Só por esta razón merecía ser recollido.


O problema do nonágono. O diagrama mostra un polígono regular de nove lados (un nonágono ou eneágono) con dous dos lados prolongados ata cortarse no punto X. Canto mide o ángulo agudo en X?

 

Cantos números-V? Un natural de tres díxitos dise que é un "número-V" se os seus díxitos son "alto-baixo-alto", isto é, se o díxito das decenas é menor que o das centenas e o das unidades. Cantos números-V de tres díxitos existen?

Pegando cubos. Un cubo está feito pegando as caras de cubiños unidade. O número de cubiños unidade pegados exactamente a outros catro cubiños é 96. Cantos cubiños unidade están pegados exactamente a outros cinco?

Un problema de porcentaxes que merece a pena? Fixémonos que o contexto está nas propias matemáticas. Moitas veces procúranse contextos artificiosos que son realmente horribles.

Incrementado nun 75%. Acha todos os números de dous díxitos e de tres díxitos que se incrementan nun 75% cando os seus díxitos se inverten.

Pola contra o contexto do seguinte remite a unha completa fabulación. Perdería moito se se propuxera un contexto presumiblemente real. Ademais ten o plus de ser un novo exemplo de problema desa gorentosa colección dos que nos ofrecen preguntas inesperadas.

A Xornada Deportiva no País das Marabillas. Alicia, o Coello Branco e a Tartaruga Falsa foron os tres únicos competidores na Xornada Deportiva, e os tres completaron todas as competicións. O sistema de puntuación foi sempre o mesmo en cada unha: os puntos recibidos polo primeiro, segundo e terceiro foron enteiros positivos e (incluso no País das Marabillas) concedíaselle máis puntos ao primeiro que ao segundo e máis puntos ao segundo que ao terceiro.

Como era de esperar o Coello Branco gañou a carreira de sacos. Ao rematar a Xornada Alicia acadou os 18 puntos mentres que a Tartaruga Falsa ficou con 9 e o Coello Branco con 8. Podes dicirme cantas competicións houbo? E quen quedou de último no campionato de billarda?


Nunha próxima entrega ofreceremos unha escolma para os dous últimos cursos da ESO.

luns, 13 de abril de 2020

O problema da persecución de Apolonio


Problema da persecución de Apolonio. Consideremos dous barcos A e B que se desprazan en liña recta e tales que a velocidade de B é k veces a de A. Trátase de que, sabendo a dirección de avance de A, o barco B o intercepte no menor tempo posible.

Para dar resposta a este problema imos trasladarnos atrás no tempo. Como case sempre sucede na xeometría plana, hai que retrotraerse ata os Elementos de Euclides (III a.C.), concretamente ao seguinte resultado:
Proposición VI.3. Se o ángulo dun triángulo se corta á metade e a recta que corta o ángulo corta tamén a base, os segmentos da base gardarán a mesma razón que os restantes lados do triángulo; e se os segmentos da base gardan a mesma razón que os restantes lados do triángulo, a recta unida dende o vértice ata o punto de corte cortará á metade o ángulo do triángulo. [ver Elementos]
A primeira implicación é tamén un dos primeiros resultados (1.33) que achamos no recomendable Geometry revisited de H. S. M. Coxeter e S. L. Greitzer, onde se demostra por medio do teorema dos senos.
Teorema 1.33. A bisectriz dun ángulo dun triángulo divide o lado oposto en dous segmentos de lonxitude proporcional á lonxitude dos lados que o forman.
Aplicando o teorema dos senos e tendo en conta que os ángulos suplementarios en M teñen o mesmo seno:
$$\frac { AM }{ sen\left( \frac { C }{ 2 }  \right)  } =\frac { b }{ senM } \\ \frac { BM }{ sen\left( \frac { C }{ 2 }  \right)  } =\frac { a }{ senM } \\ \frac { AM }{ BM } =\frac { b }{ a } $$

Parece ser que unha xeneralización deste resultado ao ángulo exterior é debida o matemático inglés Robert Simson (1687-1768). Estou a falar da seguinte proposición, que pode obterse a partir do teorema de Tales:

Teorema. A bisectriz tanto dun ángulo interior como exterior dun triángulo divide o lado oposto en segmentos proporcionais á lonxitude dos lados que o forman.
$$  \frac { AM }{ BM } =\frac { b }{ a } \quad \quad \quad  \frac { AN }{ BN } =\frac { b }{ a }$$

Agora estamos en disposición de definir a circunferencia de Apolonio do triángulo ABC para o vértice C: será aquela que pase por C, M e N. Con estes vimbios podemos, por fin, achegarnos á solución do problema. Pouco haberá que comentar se sabemos que a razón das distancias dos puntos da circunferencia de Apolonio dun vértice aos outros dous é constante, concretamente

Teorema. Sexa P un punto da circunferencia de Apolonio do vértice C dun triángulo ABC, entón
$$\frac { PA }{ PB } =\frac { b }{ a }$$

Desde B trazamos perpendiculares a PM e PN que cortan a PA en E e en F. Así podemos trazar tamén BE e BF.
Como MP ⏊ PN ⏊ BF temos tamén que MP ∥ BF. Polo teorema de Tales:
$$\frac { PA }{ PF } =\frac { AM }{ BM }=\frac { b }{ a }\quad\quad\quad[1]$$
Como EB ⏊ MP ⏊ PN temos tamén que EB ∥ PN. Polo teorema de Tales:
$$\frac { PA }{ PE } =\frac { AN }{ BN }=\frac { b }{ a }\quad\quad\quad[2]$$
Entón 
$$\frac { PA }{ PF } =\frac { PA }{ PE }\Rightarrow PF=PE$$
Como EB ∥ PN ⏊ BF entón tamén EB ⏊ BF polo que o triángulo EBF é recto en B e, xa que logo, P é o punto medio da hipotenusa polo que tamén será o circuncentro. Velaí que PF=PB
$$\frac{PA}{PB}=\frac { PA }{ PF }=\frac{PA}{PE}=\frac{b}{a}\quad\Box $$

Ademais ABMN forman unha cuaterna harmónica xa que a súa razón dobre é -1. Basta ter en conta [1] e [2] e considerar que os segmentos están orientados, isto é, que están dotados de signo
$$\left( A,B,M,N \right) =\frac { AM }{ BM } \frac { BN }{ AN } =-\frac { b }{ a } \frac { a }{ b } =-1$$
Xa que estamos metidos en fariña, lembremos as leccións de xeometría proxectiva. As proxeccións conservan a razón dobre e, en consecuencia, as razóns harmónicas tamén serán invariantes. As inversións tamén se conservan por proxeccións.
Dados A e B, supoñamos que o punto M verificando que a razón AB/AM=k está no segmento AB. A resolución do problema da persecución consistirá en obter un punto N tal que ABMN forme unha cuaterna harmónica.
Sexa O o punto medio de A e B. Trazamos a circunferencia de diámetro AB e a perpendicular a esta recta por M cortará a esa circunferencia nun punto T. A recta TN, tanxente á circunferencia, cortará á recta AB nun punto N. Como os triángulos OTM e OTN son semellantes:
$${ OT }^{ 2 }=OA\cdot OB=ON\cdot OM$$
Esta última igualdade significa que tanto A e B como M e N son inversos con respecto á circunferencia ATB. A recta MT será a polar de N na inversión respecto a esa circunferencia.
Finalmente a circunferencia de raio MN dá a solución do problema da persecución de Apolonio pois é a circunferencia de Apolonio do triángulo ABC no vértice C, onde C será o punto de interceptación buscado, obtido como intersección da circunferencia de Apolonio e a recta que marca a dirección de avance do barco A.






Problema para a ESO
Podemos adaptar o anterior enunciado a un problema escolar que sería abordable polo alumnado da ESO:
Problema da persecución de Apolonio; versión escolar. Dous barcos A e B están a unha distancia de 3 km. Desprázanse en liña recta e a velocidade de B é k veces a de A. O barco A leva unha dirección que forma un ángulo de 45º coa liña que une os dous barcos.  B vai interceptar a A no menor tempo posible, acha o punto de encontro sabendo que $$k=\sqrt { \frac { 7 }{ 8 }  } $$
Para resolvelo basta con decatarse de que as lonxitudes dos lados a e b deben estar na mesma proporción que as velocidades dos barcos. Ademais, como o ángulo é de 45º, a altura do triángulo vai ser x.
$$\sqrt { \frac { 7 }{ 8 }  } \cdot a=b\quad \quad \quad ;\quad \quad \frac { 7 }{ 8 } { a }^{ 2 }={ b }^{ 2 }$$
Entón o problema redúcese a resolver unha ecuación de segundo grao:
$$\frac { 7 }{ 8 } \left( { x }^{ 2 }+{ x }^{ 2 } \right) ={ \left( 3-x \right)  }^{ 2 }+{ x }^{ 2 }$$
O que nunca deixa de sorprenderme das matemáticas é que tanto esta resolución analítica como a xeométrica coinciden a pesar de seren desenvolvidas por métodos completamente distintos. Ante a vista de casos coma este fáiseme moi costa arriba asumir que haxa xente que non goce deste tipo de casualidades. Ninguén pode negar que as matemáticas teñen o seu aquel de fermosura.

venres, 13 de marzo de 2020

Un problema das Olimpíadas de Singapur nas "Matemáticas na Raia"

Había xa varios anos que non tiña que impartir clase en 3º da ESO, así que cando me tocou este ano, o primeiro que pensei foi en participar en "Matemáticas na Raia", unha actividade de resolución de problemas co-organizada entre AGAPEMA (Asociación Galega de Profesorado de Educación Matemática) e a APM (Associação de Professores de Matemática). Meu dito, meu feito. Alá fomos.
A proba consiste na resolución de 5 problemas en 90 minutos. Na actividade participa toda unha clase que pode ter todo tipo de material, agás ordenadores, móbiles ou calquera tipo de conexión co exterior.
Cando lle preguntei aos meus alumnos sobre como lles fóra a proba, destacaron sobre todo a dificultade do 3º problema, o titulado "Aniversario".
Despois da proba buscaron en internet unha posible solución (quen dixo que o alumnado de secundaria non ten ningún tipo de interese?) e explicáronme que se trataba dun problema da Olimpíada Matemática de Singapur. Efectivamente, acabou sendo coñecido como o problema do aniversario de Cheryl e se hoxe incluso ten unha entrada na Wikipedia é porque no seu día se fixo viral (14/04/2015) . Aventuro que foi utilizado para debater sobre o ensino das matemáticas e comentar as diferenzas entre o dos países orientais, o dos occidentais, e máis concretamente o de cada país.
Entendo que algúns presupoñían que se era un problema proposto para rapaces de 14 anos, quizais debería poder ser abordado por calquera que teña os estudos básicos. Aquí estariamos obviando que non se trataba dunha proba ordinaria, senón dunha olimpíada matemática. Agora achámolo recollido nunha actividade galego-portuguesa, non nunha proba de avaliación regrada nin nunha reválida.
Imos ao conto. Velaquí o problema. Veremos que nesta versión Cheryl acabou sendo Helena:

Problema do aniversario de Cheryl. Versión AGPEMA-APM. Alberte e Carlos acábanse de facer amigos de Helena e queren saber cando é o seu aniversario. Helena dálles unha lista de 10 posibles días: 
15 de maio, 16 de maio, 19 de maio, 
17 de xuño, 18 de xuño, 
14 de xullo, 16 de xullo, 
14 de agosto, 15 de agosto e 17 de agosto. 
Helena entón dilles por separado a Alberte o día e a Carlos o mes do seu aniversario. Segue o diálogo: 
Alberte: Non sei cando é o aniversario de Helena, pero sei que Carlos tampouco o sabe. 
Carlos: Ao principio non sabía cando era o aniversario de Helena, pero agora seino 
Alberte: Entón eu tamén sei cando é o aniversario de Helena. 
Cando é o aniversario de Helena? 
Cando se propón un problema, antes de continuar, sempre convén un tempo de reflexión e traballo para resolvelo.

---------------------------------------------------------------------------------

Ao principio supuxen que, agás os nomes dos protagonistas do problema, o resto era unha tradución  do problema proposto en Singapur. Mais a cousa non era así. Finalmente fun dar con outra versión, anterior no tempo á de Singapur, que nun sentido moi preciso é máis semellante á de "Matemáticas na Raia" que a que tivo unha difusión masiva nas redes. Non atraso máis a exposición do problema orixinal que, agás os nomes propios, era o seguinte:
Problema do aniversario de Cheryl. Versión Singapur. Alberte e Carlos acábanse de facer amigos de Helena e queren saber cando é o seu aniversario. Helena dálles unha lista de 10 posibles días: 
15 de maio, 16 de maio, 19 de maio, 
17 de xuño, 18 de xuño, 
14 de xullo, 16 de xullo, 
14 de agosto, 15 de agosto e 17 de agosto. 
Helena entón dilles por separado a Alberte o mes e a Carlos o día do seu aniversario. Segue o diálogo: 
Alberte: Non sei cando é o aniversario de Helena, pero sei que Carlos tampouco o sabe. 
Carlos: Ao principio non sabía cando era o aniversario de Helena, pero agora seino 
Alberte: Entón eu tamén sei cando é o aniversario de Helena. 
Cando é o aniversario de Helena?
 Xa que logo, temos dous problemas. O primeiro é achar a diferenza co anterior, e o segundo resolvelo con esta nova redacción. Cal é máis difícil? Incluso sen ler os enunciados ou sen decatarme da diferenza, eu tería a resposta clara.
Por certo, as solucións das distintas versións tamén son distintas.

Como regalo, un par de problemas da Olimpíada de Singapur para o mesmo nivel (3ºESO):
🔘 Os números de Fibonacci son 1, 1, 2, 3, 5, 8, 13... onde cada termo despois do segundo obtense sumando os dous termos anteriores. Cantos dos 2014 primeiros números de Fibonacci son impares?
🔘 Sexa x un número tal que $${ x }+\frac { 1 }{ { x } } =5$$. Acha o valor de $${ x }^{ 4 }+\frac { 1 }{ { x }^{ 4 } } $$

O feito de participar na actividade de "Matemáticas na Raia" a min deume para escribir esta entrada. Teño a certeza de que aos meus alumnos de 3º lles deu para aprender e interesarse máis polas matemáticas.

martes, 14 de xaneiro de 2020

1, 2, 3, 4, 5, parábola! (primeira parte)

Un
Imaxe roubada de aquí
As orixes desta entrada están nunha imaxe da anotación "Outro problema de grellas" de J.J. na que se pedía o reconto do número de cadrados polos que pasa ben a función cadrática, ben a función radical, unindo os vértices dun rectángulo de dimensións enteiras.
A min chamoume a atención outra cuestión bastante máis fundamental. Do enunciado despréndese que só hai unha cuadrática pasando por cada punto do plano. Concretamente, dado (x1, y1) calquera só hai unha función da forma y=ax2 pasando por el. Será aquela para a que
$$a=\frac { { y }_{ 1 } }{ { x }_{ 1 }^{ 2 } } $$
Isto é, cada punto do plano determinará unha parábola, ou non?

Dous
A resposta sería afirmativa, dentro do contexto proposto, no que o extremo inferior do rectángulo coincida co vértice da parábola. Mutatis mutandis, dados dous puntos (x0, y0) e (x1, y1), sendo o primeiro o vértice, tamén queda determinada unívocamente unha parábola. Na seguinte expresión trasladamos a parábola y=ax2 ao vértice (x0, y0)
$$y=a{ \left( x-{ x }_{ 0 } \right)  }^{ 2 }+{ y }_{ 0 }$$
Polo que para determinar a parábola bastaría tomar $$a=\frac { y-{ y }_{ 0 } }{ { \left( x-{ x }_{ 0 } \right)  }^{ 2 } } $$

Tres
Isto tróuxome á memoria algo que lera hai tempo nos boletíns de ENCIGA. Así que fun ao faiado na procura daquel recordo. O que achei alí é, ao meu ver,  un dos capítulos máis interesantes na longa historia desta publicación. Trátase dun diálogo público ente dous autores arredor da seguinte cuestión de xeometría plana: 
Por tres puntos (non aliñados) pasa sempre unha parábola? En caso afirmativo, é única?

O tratamento desta cuestión desenvolveuse nos seguintes artigos:
  • Unha aplicación das matrices ó estudio da parábola, por Antón Labraña, Boletín das Ciencias Nº 21 Xaneiro 1995.
  • Unha aplicación da simetría ó estudio da parábola, por Antonio Gregorio  Montes, Boletín das Ciencias Nº 42, Febreiro 2000.
  • Unha aplicación da escala ó estudio da parábola, por Antón Labraña, Boletín das Ciencias Nº 43, Outubro 2000

O primeiro atranco co que fun bater é que non tiña o artigo do nº 21. Con todo vou aventurar, a partir da información contida nos outros dous, algunhas ideas que se podían tratar nel.
Partamos da función parabólica $$y=a{ x }^{ 2 }+bx+c\quad \quad \quad \quad [1]$$
Parece ser que daquela estaban de moda problemas do tipo:
Determina a parábola que pasa polos puntos P1(-1,6), P2(2,3) e P3(3,10)
No canto de resolver este problema, vou tratar o problema xeral para tres puntos  P1(x1, y1),
P2(x2, y2), P3(x3, y3). Substituíndo estes tres puntos en [1] obteriamos un sistema de tres ecuacións lineares con tres incógnitas, un dos tópicos a tratar en 2º de bacharelato.
$$\begin{matrix} a{ x }_{ 1 }^{ 2 }+b{ x }_{ 1 }+c={ y }_{ 1 } \\ a{ x }_{ 2 }^{ 2 }+b{ x }_{ 2 }+c={ y }_{ 2 } \\ a{ x }_{ 3 }^{ 2 }+b{ x }_{ 3 }+c={ y }_{ 3 } \end{matrix}  $$
Sexa A a matriz de coeficientes do sistema e A* a matriz ampliada cos termos independentes. A discusión do sistema parte de establecer se o determinante de A é nulo o non.
$$detA=\left| \begin{matrix} { x }_{ 1 }^{ 2 } & { x }_{ 1 } & 1 \\ { x }_{ 2 }^{ 2 } & { x }_{ 2 } & 1 \\ { x }_{ 3 }^{ 2 } & { x }_{ 3 } & 1 \end{matrix} \right| $$Estamos fronte ao famoso determinante de Vandermonde, que era moi habitual atopar descontextualizado nas páxinas dos libros de texto do último curso da secundaria. Porén esta forma de presentalo é completamente natural.

$$detA=\left| \begin{matrix} { x }_{ 1 }^{ 2 } & { x }_{ 1 } & 1 \\ { x }_{ 2 }^{ 2 } & { x }_{ 2 } & 1 \\ { x }_{ 3 }^{ 2 } & { x }_{ 3 } & 1 \end{matrix} \right| \begin{matrix} = \\ \begin{matrix} { C }_{ 1 }-{ x }_{ 1 }{ C }_{ 2 } \\ { C }_{ 2 }-{ x }_{ 1 }{ C }_{ 3 } \end{matrix} \end{matrix}\left| \begin{matrix} 0 & 0 & 1 \\ { x }_{ 2 }^{ 2 }-{ x }_{ 1 }{ x }_{ 2 } & { \quad x }_{ 2 }-{ x }_{ 1 } & 1 \\ { x }_{ 3 }^{ 2 }-{ x }_{ 3 }{ x }_{ 2 } & { \quad x }_{ 3 }-{ x }_{ 1 } & 1 \end{matrix} \right| =-\left| \begin{matrix} { x }_{ 2 }\left( { x }_{ 2 }-{ x }_{ 1 } \right)  & { \quad x }_{ 2 }-{ x }_{ 1 } \\ { x }_{ 3 }\left( { x }_{ 3 }-{ x }_{ 1 } \right)  & { \quad x }_{ 3 }-{ x }_{ 1 } \end{matrix} \right| =\\ =-\left( { x }_{ 2 }-{ x }_{ 1 } \right) \left( { x }_{ 3 }-{ x }_{ 1 } \right) \begin{vmatrix} { x }_{ 2 } & 1 \\ { x }_{ 3 } & 1 \end{vmatrix}=\left( { x }_{ 2 }-{ x }_{ 1 } \right) \left( { x }_{ 3 }-{ x }_{ 1 } \right) \left( { x }_{ 3 }-{ x }_{ 2 } \right) $$Cando este determinante non se anule, polo teorema de Rouché-Fröbenius, existirá unha única solución, isto é, teremos unha única parábola pasando por P1(x1, y1), P2(x2, y2) e P3(x3, y3)
Se o detA=0, polo menos un par deses puntos estarán na mesma vertical. Neste caso o sistema será incompatible, pois presupoñemos que os tres puntos dados son distintos,  o cal significa que non existe ningunha parábola pasando por eses tres puntos.
E ata aquí a miña  aventurada reconstrución do artigo de Labraña do Boletín das Ciencias nº 21

Tres?
Claro que isto non significa que tres puntos determinen unha única parábola. Isto era certo únicamente no contexto anterior, no que restrinximos o concepto de "parábola" ao de funcións da forma [1], isto é, parábolas de eixo vertical. Pero que pasaría se traballásemos cunha idea máis xeral de "parábola", admitindo calquera parábola no plano, con calqueira eixo posible? Este é o problema que aborda Antonio Gregorio no seu artigo do nº 42 do Boletín das Ciencias. Faino ofrecendo un contraexemplo. Consideremos os vértices do triángulo equilátero sobre a circunferencia unidade$$P_1(0,-1)\quad \quad \quad P_2\left( \frac { -\sqrt { 3 }  }{ 2 } ,\frac { 1 }{ 2 }  \right) \quad \quad \quad P_3\left( \frac { \sqrt { 3 }  }{ 2 } ,\frac { 1 }{ 2 }  \right) $$As seguintes tres parábolas pasan por eses tres puntos:$$y-2{ x }^{ 2 }+1=0\\ \frac { -y }{ 2 } +\frac { \sqrt { 3 }  }{ 2 } x-2{ \left( \frac { 1 }{ 2 } x+\frac { \sqrt { 3 }  }{ 2 } y \right)  }^{ 2 }+1=0\\ \frac { -y }{ 2 } -\frac { \sqrt { 3 }  }{ 2 } x-2{ \left( \frac { -1 }{ 2 } x+\frac { \sqrt { 3 }  }{ 2 } y \right)  }^{ 2 }+1=0$$
E velaquí a fermosa representación gráfica das mesmas:

Entendendo que para cada dirección que escollamos para o eixo teriamos unha parábola pasando por eses tres mesmos puntos, acabariamos cunha familia infinita de parábolas para eses mesmos tres puntos. Nese caso, supuxen eu,  deberiamos ser capaces de obter a colección completa de parábolas a partir dun parámetro.
A ecuación xeral dunha cónica ven dada pola forma cuadrática xeral:$$A{ x }^{ 2 }+Bxy+C{ y }^{ 2 }+Dx+Ey+F=0\quad \quad \quad \quad [2]$$
Consideremos o discriminante B2-4AB. Se é negativo a cónica será unha elipse, se é positivo será unha hipérbole e cando o seu valor é cero teremos a ecuación dunha parábola. Mediante o cambio $$\begin{matrix} { a }^{ 2 }=A \\ { c }^{ 2 }=C \end{matrix}\quad entón\quad { B }^{ 2 }=4AC={ \left( 2ac \right)  }^{ 2 }\\ $$Teremos a seguinte forma para as parábolas coa que poderiamos obter ecuacións practicamente calcadas ás que presentou Antonio Gregorio no Boletín nº 21.
$${ \left( ax+cy \right)  }^{ 2 }+Dx+Ey+F=0\quad \quad \quad \quad [3]\\ $$
Pasemos a substituir nesta expresión as coordenadas dos puntos  P1, P2 e P3 .
$${ { c }^{ 2 }-E+F=0 }\\ \frac { 3 }{ 4 } { a }^{ 2 }-\frac { \sqrt { 3 }  }{ 2 } ac+\frac { 1 }{ 4 } { c }^{ 2 }-\frac { \sqrt { 3 }  }{ 2 } D+\frac { 1 }{ 2 } E+F=0\quad \quad \quad \quad \quad [4]\\ \frac { 3 }{ 4 } { a }^{ 2 }+\frac { \sqrt { 3 }  }{ 2 } ac+\frac { 1 }{ 4 } { c }^{ 2 }+\frac { \sqrt { 3 }  }{ 2 } D+\frac { 1 }{ 2 } E+F=0\quad \quad \quad \quad \quad $$Sumando as dúas últimas:$$\frac { 3 }{ 2 } { a }^{ 2 }+\frac { 1 }{ 2 } { c }^{ 2 }+E+2F=0$$
Restando a metade desta última expresión da primeira liña de [4] : $$\frac { -3 }{ 4 } { a }^{ 2 }+\frac { 3 }{ 4 } { c }^{ 2 }+\frac { 3 }{ 2 } E=0\\ E=\frac { 1 }{ 2 } \left( { a }^{ 2 }+{ c }^{ 2 } \right) $$
Substituíndo outra vez na primeria liña de [4]: $$F=E-{ c }^{ 2 }=\frac { 1 }{ 2 } \left( { a }^{ 2 }+{ c }^{ 2 } \right) -{ c }^{ 2 }=\frac { 1 }{ 2 } \left( { a }^{ 2 }-{ c }^{ 2 } \right)=0 $$
Finalmente, restando as dúas últimas expresións de [4]: $$D=-ac$$Así [3] pasaría a escribirse: $${ \left( ax+cy \right)  }^{ 2 }-acx+\frac { 1 }{ 2 } \left( { a }^{ 2 }+{ b }^{ 2 } \right) +\frac { 1 }{ 2 } \left( { a }^{ 2 }-{ b }^{ 2 } \right) $$Se agora dividimos esta expresión por a2 e substituímos t=c/a, quédanos$${ \left( x+ty \right)  }^{ 2 }-tx+\frac { 1 }{ 2 } \left( 1+{ t }^{ 2 } \right) +\frac { 1 }{ 2 } \left( { 1 }-{ t }^{ 2 } \right)=0 $$Que é, tal e como queriamos, a familia de parábolas pasasndo por P1, P2 e P3 en función dun único parámetro t. Toda esta farramalla alxébrica terá un aspecto visual máis agradable.





Ben, ata o momento só obtivemos as infinitas parábolas que pasan por eses tres puntos concretos. Poderemos estudar o problema de obter todas as parábolas que pasan por tres puntos dados calquera (non aliñados)? Aí é onde nos esperan as sorpresas máis agradables. Xa adianto que na cerna da solución desta cuestión está a deltoide de Steiner! (da que temos falado aquí). Pero isto xa o trataremos noutra entrada.

luns, 21 de xaneiro de 2019

Dous listados de exercicios de ecuacións irracionais

Ecucións e sistemas no Descartes EDAD
O profesor debe encontrarse cómodo co material que utiliza. Por esta razón eu nunca cheguei a empregar ningún libro de texto, agás nun caso, que xa recomendei nalgunha ocasión. Trátase da ferramenta EDAD da plataforma Descartes, que ademais ten a ventaxa, para min imprescindible,  de podérmola utilizar en galego.
Con todo, que utilicemos un libro texto ou unha guía didáctica de calquera tipo, non significa que teñamos que empregala en todo momento e para todo. O recomendable é serlle infiel pois o seguemento sistemático dun libro de texto empobrece a aprendizaxe xa que nunca pode adaptarse ao cen por cen ao noso estilo nin ás necesidades dos nosos alumnos. Vou contar algunha das traizóns ao EDAD que apliquei as últimas veces que impartín clase ne 4º da ESO, en concreto na materia que agora se denomina Matemáticas Orientadas ás Ensinanzas Académicas, antes Matemáticas B.

No tema de 4º da ESO adicado ás ecuacións e sistemas, no seu apartado 2.3, que trata das ecuacións irracionais, pídese que se resolvan varias deste tipo. Pode aparecernos, por exemplo, a seguinte: $$\sqrt { -3-4x } +4x=-5$$ Se queremos seguir practicando o programa ofrécenos a posibilidade de xenerar moitas outras como as seguintes $$\sqrt { x-4 } -8=-2x\\ -7-2\sqrt { 7x+2 } =2\\ x-2\sqrt { -2-9x } =6$$ E así sucesivamente. Isto tamén é habitual nos libros de texto, unha restra de exercicios do mesmo tipo, que pode levar á tentación de propoñerllos todos aos alumnos. Hábito desafortunadamente nada infrecuente, polo que teño visto no transcurso de moitos anos de docencia. O alumnado debe enfrontarse a estes exercicios e ten que desenvolver e aprender as ferramentas para realizalos con fluidez. A cuestión é que facer unha lista de exercicios do mesmo tipo non serve para nada (bo). O único que podemos conseguir é que os rapaces se aburran e acaben tendo a idea falsa de que as matemáticas consiste nunha restra de algoritmos.
Ben certo é que este tipo de traballos non son moi agradecidos pois só se trata de aprender a traballar determinado tipo de habilidades coas expresións alxébricas. Pero non nos queda outra que entrenalos, o cal non significa que debamos mandar un boletín con 20 ecuacións deste tipo para que os fagan de deberes na fin de semana (ou aínda peor, para o día seguinte).
En primeiro lugar, facer os problemas na clase ten a ventaxa de poder discutilos cos compañeiros e de contar coas indicacións do profesor. Por outra banda o profesor non debe facer el os exercicios inmediatamente. Hai que deixar tempo a que os estudantes se enfronten a eles, permitir que cometan erros para facerllos ver, deixar que discutan os pasos a dar, que razoen e confronten se o fixeron ben ou non. Todo isto leva tempo, pero é tempo gañado para aprendizaxe.
Neste apartado, no das ecuacións irrracionais (e en moitos outros), eu taizoo á plataforma Descartes EDAD. No canto do anterior listado de exercicios preséntolle este outro: $$a)\quad 3x+\sqrt { { x }^{ 2 }-5x+16 } =19\\b)\quad \sqrt { x-2 } -\sqrt { x-5 } =1\\ c)\quad \sqrt { { x }^{ 2 }+1+2\sqrt { 4x-3 } } =x+1\\ d)\quad \frac { 2\sqrt { x+5 } }{ 4-\sqrt { x } } =\frac { 4+\sqrt { x } }{ \sqrt { x } } \\ e)\sqrt { { x }^{ 3 }-x+3 } -x=1\\ f)\sqrt [ 3 ]{ x+3 } +3=x\\ g)\sqrt { { x }^{ 4 }+144 } =5x$$ O apartado a) non presenta ningunha dificultade, pero polo menos ten a novidade, con respecto aos anteriormente presentados, de que aparece unha expresión cadrática. No apartrado b) o alumnado adoita protestar porque lles aparecen dous radicais e "iso non o vimos", cando precisamente aí está o interesante da cuestión. Por iso no c) volven a queixarse, "unha raíz dentro doutra! isto é pasarse!". Curiosamente o maior bloqueo téñeno co d), pois a maioría non saben como dar o primeiro paso. Por exemplo, case ninguén se decata de que poden multiplicar en cruz. Ademais a comprobación das solucións deste caso pode dar para reflexionar cando un valor é solución ou non.  Os apartados e) ou g) non lles presentan dificultades e ademais teñen a virtude de ofrecer retos que lles permiten utilizar e repasar temas xa aprendidos (resolución de ecuacións bicadráticas ou polinómicas). Con todo, teño visto intentos estrafalarios de sacar a incógnita fóra do radical, quizais pola tensión que a algún lle produce o feito de ver unha potencia de grao superior a 2. No f) sempre hai alguén que comenta en alto: "hai que aplicar o triángulo de Tartaglia" e outro que lle responde con enfado: "pero iso non é deste tema!". Neste caso a resolución pode levarnos a tratar o número áureo, o que nos permitiría dar un paseo por outros mundos das matemáticas e descansar dos procedementos da resolución de ecuacións. Como se ve, o proceso é moito máis entretido que a repetición machacona do mesmo exercicio con distintos valores numéricos coa ventaxa engadida de teren que enfrontarse a distintas problemáticas e de teren que facelo por si mesmos.
Non é esta a única infidelidade que cometo con este tema do Descartes EDAD.  Na proposta orixinal hai un apartado que se denomina "Ecuacións factorizadas". Trátase de ecuacións da forma P(x) = 0, onde P(x) é un polinomio. Eu sáltoo porque xa o traballamos no tema de polinomios. Pola contra hai unha cuestión que engado e que non aparece no Descartes EDAD, que son as fórmulas de Viète para as ecuacións de 2º grao.
Todas estas adaptacións como son a realización doutros exercicios, eliminación de apartados, introdución doutros novos, ou calquera outra que nos conveña, poden recollerse nos cadernos de traballo que se propoñen na primeira páxina de cada tema do Descartes EDAD. Velaquí outra razón para pensar en incorporar nalgunha ocasión este sistema ás nosas aulas. Xa non se trata do ríxido formato do libro de texto ao que nos debamos adaptar, agora é unha axuda chea de recursos que se pode adaptar ás nosas necesidades.
Agora ben, non sempre se pode facer o que describín nesta entrada. Pode ser que o perfil do alumnado que teñamos non sexa quen de abordar o segundo listado de problemas que propuxen aquí. Nese caso traballar na clase con estes exercicios pode xenerar frustracións máis que aprendizaxe polo que habería que recoller a tanza e insistir cun listado de problemas máis semellante ao primeiro. De aí a necesidade do profesor.

xoves, 16 de xuño de 2016

Matemáticas escritas en arxila

Nunha entrada anterior comentaba que os meus profesores de matemáticas foran mellores que os que tiven de física e seguramente isto deixou unha pequena pegada en que lle collera máis gusto á prmerira materia en detrimento da segunda. Con todo había algo que aqueles meus profesores de física facían mellor cós de matemáticas (e penso que isto pode xeneralizarse ao conxunto deste dous colectivos). Trátase da contextualzación histórica do que se trata na aula. O profesorado de física nunca deixa de nomear a Newton, Faraday, Maxwell e moitos outros, porén no gremio dos de matemáticas parece como se todo saíse do Libro Sagrado, cando nalgunhas ocasións o máis importante quizais sexa o trasfondo histórico.
Ao traballar a resolución de sistema de ecuacións non lineares (4º ESO) sempre propoño o seguinte problema que, segundo Rey Pastor e Babini, no libro Historia de la matemática, procede dunha taboiña de arxila babilónica:
Longo e largo. Multipliquei longo por largo e obtiven a área. Engadin á área o exceso de longo sobre largo: 183. Ademais sumei longo e largo: 27. Pídese longo e largo.
O problema non é especialmente orixinal. Nun principio poderiamos dicir que os libros de texto están cheos de problemas semellantes (ben, aínda que case todos os sistemas que presentan son simétricos: poderían intercambiarse as incógnitas e o sistema ficaría idéntico). Porén, non se pode negar que non ten o seu punto resolver unproblema que ten máis de 3600 anos, tan antigo que viña escrito en pedra. Ademais temos o valor engadido de podermos falar das razóns polas que aínda hoxe partimos a circunferencia en 360º, ou do sistema de numeración sexaxesimal, das vantaxes da notación posicional, pódemos facer prácticas operando coa notación babilónica, resaltar a importancia do cero ou tratar do chauvinismo eurocentrista cando se trata de relatar a historia das matemáticas, ou de calquera outra historia. Mesmo dá para comentar a situación social e política actual de Siria, Iraq ou Irán.
Imaxe da MLC 1950
 sacada de aquí
Nestes días batín con outro problema procedente da matemática babilónca. O certo é que xa o vira referenciado neste artigo do nº 58 de SUMA, pero como alí non se daba o enunciado completo pasáraseme desapercibido.
O problema aparece na taboiña MLC 1950 recollida nas excavacións de Uruk (MLC fai referencia á Morgan Library Collection da Universidade de Yale, que é onde se encontra). A súa recuperación para o mundo das matemáticas débese, como non, a Otto Neugebauer.
Recollo o enunciado do curioso libro de Roger Caratini, Los matemáticos de Babilonia. O de curioso vén porque é un ataque furibundo aos exiptólogos. Caratini defende que "en materia de xeometría os antigos exípcios non foron outra cousa que agrimensores e, en materia da ciencia dos números, o seu saber [...] era o de simples contables". Nestes tempos no que se impón unha aburrida redacción do políticamente correcto é moi de agradecer que se expresen opinións con esta claridade... aínda que este autor, fundamente esta tese na insistencia de que chegaron a nós decenas de miles de taboiñas sumerias con contido matemático fronte ás "escasas e decepcionantes" fontes exipcias: catro, e só "catro desgraciados papiros". O que non conta Caratini é que a conservación do papiro exípcio non é comparable á das taboíñas de arxila babilónicas. Estas opinións contrastan frontalmente coas de Gheverghese Joseph, quen na obra La cresta del pavo real afirma que as características xeográficas do Nilo
converteron a civilización exipcia nunha das máis agradables e pacíficas do mundo antigo. Isto contrastou agudamente cos seus veciños mesopotámicos, quen non só tiveron que loitar cun ambiente natural máis duro, senón que con frecuencia víronse ameazados dos invasores procedentes das terras da contorna
MLC 1950
Despois desta breve introdución, paso a expoñer o enunciado do problema da taboíña MLC 1950:
Trátase de calcular as lonxitudes de b e b' sabendo que h=AD=20, h'=DB=30 e a área do trapecio ADEC é 320:
Escondín aquí abaixo a solución que dá o escriba de Uruk pois sempre convén pensar antes en acharmos nós a solución.