martes, 19 de xuño de 2018

Problemas consecutivos

Velaquí unha lista de problemas que, por algunha razón, cualificamos de consecutivos.

Problema 1. Dada unha plataforma  2x3, vemos que podemos cubrila consecutivamente de esquerda a dereita con fichas de dominó de 3 formas distintas:
Pídese facer o reconto das formas de cubrir con fichas de dominó unha plataforma 2xn

Problema 2. De cantas formas podemos escoller un subconxunto entre os n primeiros números {1, 2, 3, 4, ..., n} de forma que non haxa dous consecutivos?

Problema 3. En n tiradas dunha moeda, acha a probabilidade de non obter dúas caras consecutivas. E a de non obter tres caras consecutivas?

Problema 4. Dispoñemos de todas as moedas que queiramos de 1 € e de 2 € . Se tivéramos que pagar 4 € nun caixeiro automático poderiamos facelo de 5 maneiras distintas introducindo as moedas consecutivamente: 1+1+1+1, 1+1+2, 1+2+1, 2+1+1 ou 2+2+1.
De cantas fomas podemos realizar un pago de n €? E se non importa a orde en que introducimos as moedas?

Problema 5. Dado o rectángulo ABCD, determinamos sobre dous lados consecutivos dous puntos P e Q respectivamente, tales que os triángulos T1, T2 e T3 teñan a mesma área. Calcula as proporcións AP/PB e CQ/QB.

Problema 6. Dado un rectángulo de lados x e y, engadímoslle consecutivamente a un dos lados un cadrado formando así outro rectángulo maior. Acha a relación entre os lados x e y sabendo que as diagonais dos rectángulos son perpendiculares.

Post Scriptum. Problema 7. Dado un triángulo equilátero de lado unha unidade, se escollemos un punto dun dos lados trazando paralelas a estes determínanse tres triángulos equiláteros. Tamén se forman os trapecios marcados na imaxe. Trátase de determinar o valor de x para que eses trapecios sexan semellantes.

Post Scriptum. Problema 8. Determina a razón a/b para que a área da elipse e da coroa circular coincidan. 

Post Scriptum. Problema 9. Dado un triángulo ABC inscrito nunha circunferencia consideremos os puntos medios D e E , do lado AB e do lado AC respectivamente. Prolongamos DF ata que interseca na circunferencia en F. Pídese a razón DF/DE

Post Scriptum. Problema 10. Pídese a razón entre as áreas dos triángulos sombreados
Post Scriptum. Problema 11. En tres circunferencias iguais inscribimos un pentágono, un hexágono e un decágono. Os lados destes polígonos forman un triángulo rectángulo. Determina a razón entre os catetos. 

Post Scriptum. Problema 12. Resolve $1+10^{x}=100^{x}$. [recollido de aquí]

Ningún comentario:

Publicar un comentario