xoves, 3 de novembro de 2022

Catro resultados elegantes

Noutra ocasión troxéramos por este espazo unha fórmula que non dubidaría en cualificar de elegante:

Resultado 1. $arctan1+arctan2+arctan3=180$

A súa demostración déixanos sen palabras:

Este resultado pode promovernos unha atractiva sospeita. Como os ángulos suman 180º, quizais tamén se verifique que

Resultado 2. Existe un triángulo con ángulos que teñen tanxentes 1, 2 e 3

Bastará con amosalo

E quizais engadir unha pequena aclaración: $$tan\beta =tan\left ( \alpha '+\gamma ' \right )=\frac{tan\alpha '+tan\gamma '}{1-tan\alpha 'tan\gamma '}=\frac{1+\frac{1}{3}}{1-1\cdot \frac{1}{3}}=2$$

Como veremos, este xentil triángulo non é un triángulo máis. Ten un rasgo distintivo que destacaron nun enunciado dun problema da LXV Olimpíada Matemática de Moscú no 2002. Recollémolo do libro La matemática elegante (URSS 2005) nesta versión:

Resultado 3. Se as tanxentes dos ángulos dun triángulo son números naturais, entón serán iguais a 1, 2 e 3.

Xa sabemos que esta afirmación ten sentido porque acabamos de ver un triángulo con ángulos de tanxentes 1, 2 e 3. Quédanos por verificar a súa unicidade. Partiremos de que as tanxentes dos ángulos $\alpha$, $\beta$ e $\gamma$ son os números naturais $a$, $b$ e $c$. Como $180-\gamma=\alpha+\beta$

$$tan\left ( 180-\gamma  \right )=tan\left ( \alpha +\beta  \right )=\frac{tan\alpha +tan\beta }{1-tan\alpha \cdot tan\beta }=\frac{a+b}{1-ab}=-c$$

De aí que $a+b+c=abc$

Curiosamente o resultado 3, de apariencia estritamente trigonométrica, é equivalente ao seguinte, eminentemente aritmético:

Resultado 4. Se a suma de tres naturais coincide co seu produto, serán o 1, o 2 e o 3.

Sen perda de xeneralidade consideremos que $a\leq b\leq c$

Se $a=1$: $1+b+c=bc$

$1+b=bc-c=c\left (  b-1\right ) \Rightarrow c\mid \left ( b+1 \right )$ como $c\geqslant b$ necesariamente $c=b+1$. Daquela $b-1=1$, polo que $b=2$ e $c=3$.

Consideremos agora o caso de que $a\geqslant 2$. Entón $b\geqslant 2$ 

Como $a+b+c\geqslant abc\geqslant 4c$ temos que $a+b\geqslant 3c$

Como $c+c\geqslant a+b\geqslant 3c$ temos que $2c\geqslant 3c$ entón $1\geqslant c$, o que é imposible pois $c\geqslant a\geqslant 2$. 

Xa que logo concluímos que só hai unha posibilidade, a de que $a=1$, $b=2$ e $c=3$.

Ningún comentario:

Publicar un comentario