martes, 23 de febreiro de 2016

Grafos e divisores.2

Nunha entrada anterior chegamos á idea de grafo de divisores de forma natural, como ferramenta para abordaxe do estudo da lonxitude dos camiños nun xogo de múltiplos e divisores que recolliamos da páxina Nrich. Así, dado o conxunto S dos n primeiros números naturais construiamos un grafo de tal xeito que se $$i,j\in S\quad \quad \quad ij\quad é\quad unha\quad aresta\quad \Longleftrightarrow \quad i|j\quad ou\quad j|i$$
O concepto de grafo de divisores pódese ampliar tomando S como calquer subconxunto finito de números enteiros. Con esta nova definición resulta que temos moitos grafos que son grafos de divisores. Por exemplo todos os posibles grafos con 5 vértices ou menos, agás un, son grafos de divisores. Non é nada complicado debuxalos todos asignándolle os números correspondentes aos vértices para comprobar que realmente son grafos de divisores. Velaquí uns poucos de exemplos (a comprobación da totalidade deles pode ser un exercicio divertido)

Unha actividade entretida para os que teñan algo de gosto pola astronomía podía ser o de indagar se as constelacións son grafos de divisores. Velaquí, por exemplo que o Setestrelo sí que o é:Se temos vértices, o maior número de arestas que podemos establecer entre eles é un deses problemas que se resolven nas primeiras clases de combinatoria:
 son $$\left( \begin{matrix} n \\ 2 \end{matrix} \right) $$.
Tendo isto presente, verifícase o seguinte teorema:
$$Dados\quad dous\quad números\quad naturais,\quad n\quad e\quad m,\quad con\quad 0\le m\le \left( \begin{matrix} n \\ 2 \end{matrix} \right) ,\quad \\ hai\quad polo\quad menos\quad un\quad grafo\quad divisor\quad con\quad n\quad vértices\quad e\quad m\quad arestas$$

Este resultado asegura certa abundancia de grafos divisores. Tamén se sabe que todos os grafos completos Kn , Km,n ,  as árbores e todos os grafos bipartitos son grafos de divisores. Pero tamén hai moitos outros grafos que non son divisores. O grafo cíclico C5 non é un grafo divisor, incluso máis, ningún grafo divisor pode conter a C5. A razón de que isto sexa así vén da transitividade da relación "ser divisor de". Así, todo grafo divisor ten asociado un grafo dirixido no que se u|v podemos establecer un arco (u,v). Se C5 fose un grafo divisor, tería que haber tres vértices x, y, z, tales que x|y e y|z. Polo tanto x|z e debería haber unha aresta máis que as que ten C5. De feito, ningún grafo cíclico impar de 5 ou máis vértices, pode ser un grafo divisor.
Pola contra é moi doado establecer un algoritmo que asigne valores numéricos aos vértices co fin de converter en grafos divisores todos os cíclicos pares.  Para comprobarmos que por exemplo C6 é un grafo de divisores basta ir etiquetando, poñamos por caso, no sentido das agullas dun reloxo, un vértice si e outro non, cos primeiros primos: 2, 3, 5,.... Os vértices intermedios serán o produto dos dous adxacentes. Está claro que a paridade é o que determina que poidamos realizar esta etiquetaxe nun grafo cíclico.
Xa sabemos que Cnon é grafo de divisores. Podemos dar referencia de moitos máis. Velaquí un par de exemplos:

Entón xurde a cuestión de caracterizar os grafos divisores. Xa sabemos que a todo grafo de divisores vaille asociado un grafo dirixido. Basta escoller os arcos a partir da relación "u divide a v". Daquela temos o seguinte resultado:
Que un grafo sexa un grafo de divisores é equivalente a que exista unha orientación que verifique a propiedade transitva [isto é, se (u,v) e (v,w) son arcos, entón (u,w) tamén o será]

Xeneralizando
Pódese ampliar novamente o concepto de grafo divisor. No canto de considerar o conxunto dos números enteiros podemos tomar un anel conmutativo calquera.
Neste contexto vai unha cuestión. Sexa K5 o grafo completo de 5 vértices. Será un grafo de divisores? Para abordar a pregunta pensei que se podería resolver se tiñamos un anel con 5 unidades.
Sexa
$$\xi ={ e }^{ \frac { 2\pi i }{ 5 }  }=cos\frac { 2\pi  }{ 5 } +i\cdot sen\frac { 2\pi  }{ 5 }  $$ a raíz quinta da unidade. Resulta que o anel ciclotómico $$Z\left[ \xi  \right] $$ ten como unidades $$1,\xi ,{ \xi  }^{ 2 },{ \xi  }^{ 3 },{ \xi  }^{ 4 }$$ polo que o grafo divisor asociado ao conxunto destes cinco elementos é o grafo completo K5.
Despois de pegar este chimpo vin que se podía chegar ao mesmo resultado cun grafo en Z, tomando o conxunto de vértices $$S=\left\{ 2,{ 2 }^{ 2 },{ 2 }^{ 3 },{ 2 }^{ 4 },{ 2 }^{ 5 } \right\} $$
Está claro que todos os grafos completos son divisores. A cuestión que me asaltou é se hai algún anel que dea acubillo a algún grafo divisor que non poidamos atopar en Z.

Máis?
Un concepto asociado ao dos grafos divisores é o dos grafos coprimos. Considerando o conxunto de vértices entre os enteiros, as arestas (u,v) estableceranse entre aqueles números que sexan coprimos.
Dada un grafo G calquera, seguindo o seguinte procedemento, obteremos un grafo coprimo isomorfo a G:
  • Consideremos o grafo complementario G cos mesmos vértices e cuxas arestas son xusto as que non aparecen en G
  • En G etiquetamos todos os vértices aillados con números primos (distintos)
  • Se temos unha aresta aillada en G escolleremos outro primo p e etiquetaremos os dous vértices como p e p2
  • Se temos unha compoñente de orde 3 ou más en G, asociaremos primos distintos a cada unha das súas arestas. Entón cada vértice etiquétase co produto das arestas que inciden nel.
Deste xeito podemos construir un grafo coprimo isomorfo a calquera outro dado: todos os grafos son grafos coprimos. Velaquí, como exemplo, temos o proceso de etiquetaxe de C5.

Algunhas lecturas
Whic graphs are divisor graphs?
Bipartite divisor graphs
Divisor graph have arbitrary order and size
On the logest simple paht in a divisor graph
Further new properties of divisor graphs


xoves, 18 de febreiro de 2016

Grafos e divisores.1

Do portal NRICH
Remexendo pola arañeira batín con este entretido xogo do web NRICH (enriching mathematics).   Participan dous xogadores alternativamente escollendo da grella de números da esquerda que, como se ve, contén os 100 primeiros naturais. As regras son moi sinxelas:
Regra 1.O primeiro xogador pode escoller calquera número menor que 50 (no exemplo puxen o 45).
Regra 2. O seguinte número debe ser sempre un múltiplo ou un divisor do anterior.
Finalización. Perde aquel que non poida coller ningún número máis.
O xogo pode propoñérse en calquera aula dos primeiros cursos da ESO xa que permite desenvolver o cálculo e a familiarización cos conceptos de múltiplo, divisor, número primo, número composto, coprimos,...
NRICH suxire dar novos enfoques ao xogo, como o de presentalo sen a restricción dada pola primeira regra para logo poñer en evidencia a súa necesidade se non queremos ter un xogo trivial. Tamén podemos investigar se hai algunha estratexia gañadora, ou se hai números que nos convén evitar. Claro que as posibilidades non rematan aquí. De ser moi complicada a abordaxe deste xogo, podería restrinxirse a outras versións que tiveran unha menor cantidade de números: 15, 20, 30, 50,... ou, se cadra, somos quen de aventurar que é o que sucede cando partimos de 101 números, ou 200, ..., 1000,...n,...
Tamén está a cuestión de cal é a maior cadea de números que podemos formar na grella da dereita. Por exemplo, na imaxe anterior tiñamos unha cadea de 11 números susceptible de ser ampliada. Para estudar o problema podemos ver que é o que pasa cos primeiros casos.
O problema parece que pode abordarse botando man dos grafos. Partimos dun conxunto de vértices numerados polos n primeiros números
$$S=\left\{ { v }_{ 1 },{ v }_{ 2 },{ v }_{ 3 },...{ v }_{ n } \right\}$$
Para establecermos as arestas usaremos a seguinte definición
$${ \forall i\neq j\quad v }_{ i }\quad e\quad { v }_{ j\quad  }\quad forman\quad unha\quad aresta\quad \Longleftrightarrow \quad i|j\quad ou\quad _{ \quad  }j|i$$
A un grafo así determinado podémoslle chamar grafo de divisores. No grafo de divisores dado polos cinco primeiros números está claro que a cadea máis longa que podemos formar ten unha lonxitude de 4 vértices: 3, 1, 2, 4.
Pero a pouco que pasemos dos primeiros casos, como era de esperar, o grafo vaise complicando. Para o grafo de divisores dos 13 primeiros números naturais teremos polo menos unha cadea de lonxitude 10 a seguinte: 9, 3, 6, 12, 4, 8, 1, 5, 10, 2 (ou 11, 1, 5, 10, 2, 8, 4, 12, 3, 9) que parece difícil de superar




Se lle chamamos f(n) ao valor da lonxitude da máxima cadea que podemos formar nun destes grafos de n números, acabamos de ver que f(4)=f(5)=4 e que f(13)=10. Podemos intentar obter unha táboa que nos ofreza pistas para intentar aventurar o resto dos valores de f(n). Pero a cuestión non é nada simple.
Parece ser que P. Erdös, R. Freud e N. Hegyvári estableceron que para valores de n o suficientemente grandes (nas fórmulas log indica o logaritmo neperiano):
$$f(n)\le (1-log2)n$$
Se quixeramos unha limitación inferior teriamos esta de A. D. Pollington:
$$\forall c>0\quad \exists N/n\ge N\Longrightarrow f(n)\ge n\cdot { e }^{ -(2+c)\sqrt { logn\cdot log(logn) }  }$$
O artigo de Erdös e cia. non falaba de grafos senón de permutacións a1, a2 ,a3, ..., an , dos primeiros enteiros 1,2,3,....,n. Ou máis suxerententemente, trataba das permutacións a1, a2,a3, ..., a,....de todos os números naturais. Concretamente dábanse resultados sobre o mínimo común múltiplo  e o máximo común divisor de dous elementos consecutivos nesas permutacións. Un dos teoremas cualificábano os propios autores de pobre resultado. Di o seguinte:
Dada unha permutación de todos os naturais a1, a2,a3, ..., a,....:
$$\bar { \underset { i }{ lim }  } \frac { \left[ { a }_{ i },{ a }_{ i+1 } \right]  }{ i } \ge \frac { 1 }{ 1-log2 } \simeq 3,26$$
Certamente é difícil imaxinar unha permutación  na que este límite fique dentro do ámbito da finitude.

mércores, 3 de febreiro de 2016

As matemáticas son aburridas e non serven para nada

TEDxGalicia@USC - Elena Vázquez from denha on Vimeo.

A que profesor de matemáticas non lle preguntaron algunha vez sobre a utilidade do que se trataba nas clases?
Nos primeiros anos de docencia respondía falando dun clásico: o estudo das cónicas por Apolonio de Perga (III a.C.). un traballo que parecía completamente inútil ata que despois de case dous milenios Johannes Kepler (1571-1630) aplicara o coñecemento das cónicas ao estudo das traxectorias dos planetas. Efectivamente, os astros errantes movíanse en traxectorias elípticas arredor do Sol, situándose éste nun dos seus focos. A cara do alumnado nese momento era un poema. Non lle vían a utilidade ao coñecemento da primeira lei de Kepler, e confimánranse aínda máis na súa primeira opinión.
Máis recentemente faláballes da seguridade na internet. A garantía de poder facer compras seguras está fundamentada nas propiedades aritméticas. Por exemplo, a encriptación RSA parte da enorme dificultade de descompoñer números grandes (centos de cifras) en factores primos. Pode que sexa cousa miña, pero finalmente quedábame coa impresión de que cando o alumnado asentía sobre a complexidade da factorización estaban entendendo que iso de andar remexendo nos números primos era a un tempo unha lata e improdutivo. E logo non era certo que os ordenadores traballaban con programas e aplicacións? Que pinta aí o mínimo común denominador? De certo que vían o meu relato demasiado forzado.
Agora tendo a facer o mesmo que Elena Vázquez nesta conferencia. Adopto a postura de G. H. Hardy (1877-1947) no seu celebérrimo (?) libro Apoloxía dun matemático e con toda a amargura respondo que, efectivamente, as matemáticas, agás quizais para min e outros coma min que vivimos de contar catro cousas sobre elas, non serven para nada. Así que a alternativa estalles moi clara. Se o alumnado é coherente, debe abandonar calquera esforzo e asumir sen paliativos o suspenso final. No caso de seren inconsecuentes, mellor selo ata o final estudando a materia esfordamente. Con algo de fortuna estes últimos matricularanse finalmente nun sitio coma éste co fin de formar un elo máis nesta cadea dos que, non sen certo sadismo, torturamos as mentes da rapazada con problemas, fórmulas e números absolutamente inútiles e que ademais son realmente insufribles.

mércores, 20 de xaneiro de 2016

Éche así... a lotería de nadal


Éche así é un programa de divulgación científica da TVG. Mellor dito, é o programa de divulgación científica da TVG. En menos de media hora tratan varios temas de carácter científico que teñen que ver coa nosa vida cotiá. Ademais o programa ten vocación de entretenemento polo que sempre está presente o (bo) humor. 
O programa ten catro presentadores: un químico, Manuel Vicente (director de Efervescencia), un biólogo, David Rodríguez, un xeólogo, David Ballesteros, e unha actriz, Saamira Ganay. 
Neste vídeo que recollo aquí trátase o tema das filas. As filas dos supermercados, dos servizos públicos, pero tamén das redes de ordenadores, das telecomunicacións, vehículos que pasan por unha rúa ou unha gasolineira,... poden ser tratadas desde o punto de vista matemático. Hai unha parte da estatística, a teoría das filas, adicada a este tipo de problemas. O precursor desta rama do saber foi o matemático dinamarqués Erlang (1878-1929).
Erlang estaba estudando como determinar a probabildade de que unha chamada tivera que esperar por estaren todas as liñas telefónicas ocupadas.
Unha distribución estatística recibe hoxe o nome de Erlang. Ten como función de densidade:
$$f\left( x,k,\lambda \right) =\frac { { \lambda }^{ k }{ e }^{ -k\lambda }{ x }^{ k-1 } }{ \left( k-1 \right) ! }$$
Tomando k=1 e dividindo por k! obtemos a función de densidade da coñecida distribución de Poisson
$$\frac { 1 }{ k } f\left( x,1,\lambda  \right) =\frac { { \lambda  }^{ k }{ e }^{ -k\lambda  } }{ k! } $$
Esta distribución é a empregada para o cáculo da probabilidade de que ocurra un determinado número de chamadas nunha unidade de tempo, ou da chegada dun número de clientes a un supermercado. Tamén se pode obter como límite da distribución binomial, por iso tamén a podemos empregar para aproximar probabilidades de experimentos binomiais, expecialmente cando o número de experimentos é grande e a probabilidade de obter un éxito é pequena. Aínda que este tópico rara veces o vin tratado nos manuais de estatística.
A obtención da distribución de Poisson a partir da binomial pode facerse da seguinte maneira:
Sexa X unha variable aleatoria binomial de parámetros n e p. A probabilidade de obter un éxito é p e repetimos o experimento n veces. A probabilidade de obter k éxitos é
$$P\left( X=k \right) =\left( \begin{matrix} n \\ k \end{matrix} \right) { p }^{ k }{ q }^{ n-k }$$
$$Sexa\quad p=\frac { \lambda  }{ n } \quad e\quad q=1-p=1-\frac { \lambda  }{ n } $$
$$P(X=k)=\left( \begin{matrix} n \\ k \end{matrix} \right) { \left( \frac { \lambda  }{ n }  \right)  }^{ k }{ \left( 1-\frac { \lambda  }{ n }  \right)  }^{ n-k }=\frac { n\cdot \left( n-1 \right) \cdot ....\cdot \left( n-k+1 \right)  }{ k! } \frac { { \lambda  }^{ k } }{ { n }^{ k } } { \left( 1-\frac { \lambda  }{ n }  \right)  }^{ n-k }$$

$$P(X=k)=\frac { n }{ n } \frac { n-1 }{ n } ....\frac { n-k+1 }{ n } \frac { { \lambda  }^{ k } }{ k! } { \left( 1-\frac { \lambda  }{ n }  \right)  }^{ n }{ \left( 1-\frac { \lambda  }{ n }  \right)  }^{ k }$$

Tomando límite cando n se fai infinitamente grande e sendo λ e x constantes: as constantes poden sair fóra do límite e o límite dos primeiros produtos é 1 en todos os casos
$$\lim _{ n\rightarrow \infty  }{ \frac { n }{ n } \frac { n-1 }{ n } ....\frac { n-k+1 }{ n } \frac { { \lambda  }^{ k } }{ k! } =1\cdot 1\cdot ....\cdot 1\cdot \frac { { \lambda  }^{ k } }{ k! }  } $$
O límite dos outros dous factores:
$$\lim _{ n\rightarrow \infty  }{ { \left( 1-\frac { \lambda  }{ n }  \right)  }^{ n }={ e }^{ -\lambda  } } $$
$$\lim _{ n\rightarrow \infty  }{ { \left( 1-\frac { \lambda  }{ n }  \right)  }^{ -k } } =1$$
Asi, recompilando todos os resultados, finalmente teremos a prometida distribución de Poisson: $$\lim _{ n\rightarrow \infty  }{ P(X=k)=\frac { { e }^{ -\lambda  }{ \lambda  }^{ k } }{ k! }  } $$

Un exercicio
Estes días de atrás andaba todo o mundo a voltas coa tolería da lotería de nadal. Se todos os anos gastamos 100 € (que é máis que a media e moito máis do recomendable), e facémolo continuadamente durante, poñamos, 50 anos. Podemos ter esperanzas de que nos toque o gordo?
Como se sortean 100.000 números e compramos 5 décimos (a 20€), a probabilidade de ter éxito é 5100.000 , ou equivalentemente, 120.000 . 
A variable aleatora X que nos dá o número de veces que nos toca o gordo é unha binomial. Poderíamos calcular a probabilidade de non obter ningúnha vez o premio así:
$$P\left( X=0 \right) =\left( \begin{matrix} 50 \\ 0 \end{matrix} \right) { \left( \frac { 1 }{ 20000 } \right) }^{ 0 }{ \left( \frac { 19999 }{ 20000 } \right) }^{ 50 }$$
A distribución de Poisson simplifícanos os cálculos:
$$\lambda =p\cdot n=\frac { 5 }{ 100000 } \cdot 50=\frac { 1 }{ 4000 } $$
A probabilidade de non obter ningún premio:
$$P\left( X=0 \right) ={ e }^{ -\frac { 1 }{ 4000 }  }=0.99975$$
Polo que só teremos premio cunha probabilidade de $$0.00025=\frac { 1 }{ 4000 } $$
Agora é o momento de pensar se convén gastar 5.000 € nesta inversión.

Volvendo ao caso do principio, o único malo do programa Éche así é o do día e hora de emisión: os domingos ás 10:30. Merecía emitirse no horario de máxima audiencia. Pero as cousas sonche así.
(Sempre temos a posibilidade de pegarlle un ollo no apartado de á carta, da TVG)

xoves, 17 de decembro de 2015

Interpretación da programación linear en 3D

Non comparto para nada a filosofía que hai detrás do deseño da materia de 2º de bacharelato Matemáticas Aplicadas ás Ciencias Sociais II. Está elaborada como unha materia puramente instrumental, o seu obxectivo fundamental é dotar de ferramentas matemáticas ao alumnado pero sen informar (e polo tanto, sen formar) sobre as razóns matemáticas que hai detrás de cada fórmula ou cada método que se pretende aprender. Deste xeito o que se nos está a pedir implicitamente ao profesorado é que impartirmos aulas de matemáticas como se fosen de relixión. Efectivamente, a metodoloxía subxacente ao currículo consiste nalgo así: "cando atopedes un problema deste tipo, hai que aplicar esta outra receita; amén". Os contidos son tan vastos que na práctica están coutadas outras metodoloxías que non sexan as de practicar acríticamente algoritmos. Un caso típico podémolo exemplificar co tema da programación linear.
Nos libros de texto preséntase o tema mediante un problema típico con dúas variables. De seguido resólvese. A todos os problemas que teñan unha estrutura similar aplicarémoslle o mesmo método. O Geogebra é, sen dúbida un moi bo aliado para relatar como funcionan estes procedementos. Xa que Aldán Santamarina, o matemático-normalizador de Moaña, fixo o traballo de nolo explicar, isto é o que ten que saber  o alumnado de 2º de bacharelato sobre a programación linear:



Para introducir a cuestión podemos partir dun exemplo simple. Consideremos a seguinte serie de restriccións:
$$x\ge 0\\ y\ge 0\\ x+y\le 4 $$

Coa función obxectivo $$f(x,y)=2x+y$$
Para resolver o problema establecemos primeiro a rexión factible, T, determinada polas restriccións dadas.

Do que se trata é de determinar, de entre todos os puntos da rexión factible T cal é (cales son) aquel para o que a función obxectivo toma o maior valor. (Noutros problemas interesa o valor mínimo).
A solución do problema pódese consultar na seguinte aplicación. Ao resolver o problema aparécenos unha misteriosa familia de rectas paralelas (en vermello na aplicación). Para cada unha desas rectas a función obxectivo toma un valor. Movendo o esvarador veremos que o máximo dáse no punto B1=(4,0).


Pero o realmente interesante, a explicación de por que o método funciona, pode vir de engadir unha nova dimensión. Se consideramos a mesma serie de restriccións no espazo tridimensional, no canto de termos o triángulo T que forma a nosa rexión factible, obteremos unha rexión 3D, $$T\times \Re $$. Se no plano cada unha das ecuacións asociadas ás restricción daban lugar a recta, no espazo teremos planos.
A introdución dunha nova dimensión cobra todo o seu sentido ao estudar a función obxectivo como unha nova variable: z=f(x,y)=2x+y. Neste caso temos un novo plano que corta oblícuamente á rexión $$T\times \Re $$
Do que se trata é de determinar o punto que alcanza a maior altura. O punto é B=(4,0,8). A súa proxección sobre o plano XY é a solución que xa obtivemos e está formada polas dúas primeiras coordenadas, (4,0). A terceira coordenada é a que nos dá a altura.


Para cada valor de z temos un plano paralelo ao plano XY. Consideremos por exemplo o plano z=4 (en azul na seguinte aplicación), que cortará ao plano z=2x+y nunha recta. A proxección desta recta sobre o plano XY é esa misteriosa recta na que todos os puntos da función obxectivo valen 4; trátase da recta 2x+y=4. Non é por casualidade que a estas rectas tamén se lles chame rectas de nivel. Con todo, de entre todos os libros de texto que consultei, só nun facían referencia a esta denominación, aínda que non explicaban a razón da mesma.


O malo desta explicación é que quen mellor a pode entender é o alumnado da materia Matemáticas II, máis habituado ao traballo coa xeometría tridimensional. Pero precisamente no seu currículo non aparece a programación linear, xa que é un tema exclusivo do de Matemáticas Aplicadas ás CC.SS. II. No temario desta última materia non hai referencias á xeometría tridimensional, aínda que é moi recomendable facelo cando se trata a resolución de sistemas de ecuacións lineares. Claro que se un perde o tempo en todas estas referencias á xeometría terá moitas dificultades en tratar todo o temario. Cousas dos currículos.

xoves, 19 de novembro de 2015

Un problema de escalas no edixgal

Velaquí que o rapaz chegoume o outro día cun problema ao que non lle daba botado man. Está en 5º de primaria, pero cando me dixo que se trataba dun problema de "sociais pero de competencia matemática" pensei en que o pobre xa estaba botado a perder.
No seu grupo están apuntados ao edixgal. Isto indícanos cousas positivas dun profesorado está preocupado pola mellora do ensino e pola situación social do entorno xa que se meteron a participar nun programa que prometía moito e que ademais tiña a ventaxa de que se liberaba aos pais da compra dos libros de texto. Porén comenzou o curso e todos vimos que o edixgal non é outra cousa que un pdf con todas as dificultades que isto acarrexa, e como veremos, sen ningunha ventaxa das posibilidades de contarmos cunha ferramenta realmente dixital. Hoxe ese profesorado está arrepentido de participar no edixgal.
O único que cambia co edixgal con respecto ao libro de texto é que para acceder aos contidos hai que moverse nun entorno de scrolls realmente pesado e dificultoso. Ademais os portátiles destinados a este programa son os do proxecto Abalar, cunha pantalla moi pequena, que dificulta aínda máis a consulta destes libros de texto. E insisto no de libros de texto porque os contidos dixitais son inexistentes. Vexamos un exemplo que nos indica que todo isto do proxecto edixgal foi montado sen planificación ningunha.
O problema ao que me refería ao principio é o nº 12 desta foto. Nada tería que dicir se este mesmo problema viñera nun libro tradicional, incluso gabaría que o mapa fixese referencia a concellos galegos, pois sempre é preferible facer referencia á realidade próxima e coñecida que a outra allea e descoñecida.


Ver a enorme contradición entre a escala do mapa e a posibilidade de cambio do tamaño do pdf

Como o problema pide que tracemos o itinerario cun fío, así o fixemos. Collín un fío e coloqueino sobre a pantalla do ordenador-Abalar. Pero como a pantalla é táctil, ao tocala para facer a medición, reducía automáticamente o tamaño do pdf. Ademais, a que tamaño había que colocalo? 100%, 147%,...? E non é isto o único problema. Abrín o pdf no meu PC, que ten unha pantalla maior e non ten os problemas do portátil-Abalar, pero se abrimos o pdf noutra pantalla de distinto tamaño, tamén cambia o tamaño do mapa. Conclusión: imposible medir o mapa. Así que, xa sen recursos, mirei cara ao rapaz e pregunteille:
- E agora, que facemos?
- Vai ser mellor mirar no google maps - contestoume. Daquela pensei que aínda non estaba todo perdido.

Materiais dixitais vs. materiais apantallados
Este capítulo levoume a pensar en materiais que realmente están preparados para traballar no entorno dixital. Sen sairmos dos problemas de semellanza, non podo deixar de recomendar esta unidade didáctica do Proxecto EDAD. Se imos a >Exercicios>Proporcionalidade directa, teremos a posibilidade de traballar de varias maneiras coas escalas dos mapas.
Estas unidades didácticas, acaídas ao entorno dixital, son prácticamente as únicas dispoñibles en galego para o ensino das matemáticas, A Xunta, se quixera, podería usar estes materiais para proxectos como o edixgal, pero prefire pagar por pdfs apantallados. A ideoloxía que hai por debaixo de todo isto atopámola no funesto decreto do plurilingüismo: o realmente importante para a Consellería de Educación é que a lingua galega siga excluída das materias de ciencias. Resulta moi revelador que para que poidamos ver un contido de matemáticas en galego recollido do fardel da Consellería, teñamos que ir a un exercicio da materia de Ciencias Sociais. O galego, nas matemáticas, está arrasado. Que a ninguén lle estrañen, xa que logo, os resultados que nos que nos revelaba o IGE hai un ano, cun 13% de baixada de uso do galego nunha década.
A alguén lle teremos que dar as grazas.

venres, 6 de novembro de 2015

O péndulo de Huygens

Desafortunadamente xa estamos celebrando a VI edición do Día da Ciencia en Galego, data instaurada para denunciar a exclusión do galego que a Consellería de Educación quer impoñer nas aulas de ciencias e tecnoloxía. Un dos personaxes que se toman como desculpa para centrar os actos desta sexta convocatoria é Christiaan Huygens (1629-1695), coñecido normalmente por ser quen determinou a forma dos aneis de Saturno ou pola teoría ondulatoria da luz quixera destacar algunha das súas aportacións en relación cunha curva moi famosa no desenvolvento das matemáticas: a cicloide. Para explicar en que consiste unha cicloide quizais o mellor sexa ver este gif
Efectivamente, a cicloide describe a traxectoria dun punto situado nunha circunferencia de radio a que xira sobre unha recta. Neste caso, se consideramos que o punto que nos debuxa a cicloide comenza a súa andaina na orixe dun sistema cartesiano e a circunferencia roda sobre o eixo de abscisas, as súas ecuacións paramétricas virán dadas por: 
$$\left\{ \begin{matrix} x=a\left( t-sent \right)  \\ y=a\left( 1-cost \right)  \end{matrix} \right \\ \\ \\ $$
Onde t mide o ángulo que forma o radio que une o punto co centro da cricunferencia e o radio perpendicular ao eixo de abscisas.$$x=OA-OQ=a\cdot t-a\cdot sent$$
$$y=AC-AB=t-a\cdot cost$$ Parece ser que a primeira referencia da que se ten coñecemento foi obra de Nicolás de Cusa cando estaba estudando o problema da cuadratura do círculo. A primeira sociedade científica da historia non era exactamente unha sociedade. Tiña nome e apelidos e chamábase Marin Mersenne (1588-1648). Con moitos coñecementos e contactos, e con boa relación cos científicos do momento sabía a quen informar e sobre que. Foi un dinamizador da ciencia da primeria metade do XVII. El tamén se ocuparía da cicloide. Proporíalle a Roverbal o cácula da área determinada por un arco de cicloide, que é o triplo da área do círculo que a xenera: $$3\pi { a }^{ 2 }$$ Galileo tamén se había de ocupar da cicloide e transmitirá o interese por esta curva a discípulos seus como Evangelista Torricelli ou Vincenzo Viviani. Será Blaise Pascal quen descubriría múltiples propiedades da curva. A cicloide é a braquistócrona. Todos sabemos que a traxectoria máis curta entre dous puntos é unha liña recta, pero cal é a curva que  isto é, a curva pola que un peso caería en menos tempo desde calquer altura ata un punto máis baixo a certa distancia da vertical. O problema de achar a curva braquistócrona foi proposto por Johann Bernouilli no 1696. El mesmo dou a solución, como Leibniz, Newton, Jacob Bernouilli e L´Hôpital. Huygens tamén fixo a súa aportación ao estudo desta curva cando resolveu o problema da curva tautócrona. Se deixamos caer unha bóla pola curva, o tempo que tarda en chegar ao punto máis baixo é o mesmo independentemente da altura á que deixamos caer a bóla. Así, un péndulo que describira unha traxectoria cicloidal tería un período de oscilación independente da amplitude. Huygens demostrará tamén que a evoluta dunha cicloide sería outra cicloide igual. Pero que é a evoluta dunha cicloide?, máis en xeral, que é a evoluta dunha curva? Para responder precisamos antes saber o que é o círculo osculador dunha curva, concepto introducido por Descartes no 1637 na súa Xeometría. Dado un punto dunha curva chamaremos círculo osculador (círculo que bica á curva) a aquel círculo que é tanxente á curva pola súa parte cóncava. O radio do círculo osculador é o chamado radio de curvatura. O seu módulo dános información de como é a curvatura da curva. Non me resisto a dar a fórmula do radio de curvatura: $$R=\frac { { \left( 1+{ y }^{ { ´ }^{ 2 } } \right)  }^{ \cfrac { 3 }{ 2 }  } }{ \left| { y }^{ ´´ } \right|  } $$ Pensemos que os radios de curvatura son todos perpendiculares á curva. O centro do círculo osculador chámase centro de curvatura. A evoluta dunha curva é outra curva formada polos centros de curvatura. Como xa comentamos anteriormente, a evoluta dunha cicloide é outra cicloide igual. Curioso, non? Podémolo comprobar na seguinte aplicación movendo con coidado o punto P activarase o rastro dos centros de curvatura e veremos como se vai debuxando a súa evoluta:  (Coa roda do rato podemos cambiar o tamaño do esquema así velo todo)
 

Isto permitiríalle a Huygens a construción dun péndulo cicloidal. Bastaba con colocar unhas guías cicloidais co fin de que a barra do péndulo sempre fose tanxente a esas guías. Consecuentemente a bóla do péndulo describiría a un tempo unha traxectoria ciloidal. Se lle dámos a volta, cabeza abaixo á anterior aplicación obteriamos o esquema que aparece na seguinte, onde se reproduce o péndulo imaxinado por Huygens. (Coa roda do rato podemos cambiar o tamaño do péndulo e así velo todo)
 
Despois do comentado pode dar a impresión de que Huygens fixo uso do cálculo diferencial, pero non foi ese o caso xa que usou únicamente métodos xeométricos. Desafortunadamente non podemos dicir que Christiaan Huygens participara das matemáticas dos bicos. Podemos comprobalo no libro no que publicou os resultados que vimos de comentar.  Paradoxalmente os resultados máis importantes deste libro tómanse como o punto referencial da primeira aplicación da xeometría diferencial. Isto é unha carácterística moi común no desenvolvemento científico xa que en non poucas ocasións acharemos tratados, mesmo resoltos problemas que hoxe caen dentro dunha rama específica, pero que foron estudados con métodos doutra rama xa que ésta aínda non estaba desenvolvida. Lembremos que Isaac Barrow establecera nin máis nin menos que o teorema fundamental do cálculo aplicando tamén únicamente métodos xeométricos. Todo isto dá lugar a pensar que nesa altura, ben andado o século XVII, dalgunha maneira estaba determinada a futura elaboración do cálculo infinitesimal. Huygens publicou estes resultados no seu Horologium Oscillatorium (Péndulo Oscilatorio) no 1673, época na que Newton estaba dando os primeiros pasos no cálculo. Unha marabilla que nos permite a tecnoloxía desde hai ben pouco é a de podermos consultar libros coma este sen máis que prender o ordenador: