Nestes días Ucraína é o gran foco de atención mundial. Desafortunadamente éo porque nese espello reflíctese a cara máis aborrecible do ser humano: morte, destrución e guerra con consecuencias imprevisibles pero sempre cargadas de dor. A invasión mediática é tal que incluso desde os lugares máis alonxados as insitucións máis distanciadas do conflito viraron a súa mirada cara Ucraína. Foi o caso da Real Academia Galega, en concreto do seu Seminario de Onomástica, que se preocupou pola forma que deberían ter na nosa lingua os topónimos ucraínos. O caso máis rechamante quizais sexa o da capital, que ata o momento coñeciamos a través da súa adaptación rusa, Kiev, pero que a partir de agora deberemos escribir, Kíiv, a súa transliteración da pronuncia autóctona do nome.
E que ten que ver todo isto coas matemáticas? O parágrafo anterior serve para explicar a discrepancia de grafías entre o título da entrada e a do libro ao que me vou referir, From Erdös do Kiev: Problems of Olympiad Caliber. O seu autor é, nin máis nin menos, que o canadiano Ross Honsberger (1929-2016), responsable dunha boa colección de diamantes, xemas e delicias matemáticas. O libro, está claro, recolle problemas de distintas competicións matemáticas e, efectivamente, unha delas foi unha olimpíada celebrada en Kíiv no 1954. O comentario explícto de Honsberger de que o problema que recolle se lle propuxera a estudantes de 9º grao (equivalente ao noso 3º da ESO) incita a que pensemos que é demasiado difícil para este nivel. Presentamos por fin o enunciado:
Inscríbese unha circunferencia nun triángulo e circunscríbese un cadrado a esa circunferencia. Demostra que máis da metade do perímetro do cadrado está dentro do triángulo.
Dito doutro xeito, e facendo referencia ao seguinte applet, hai que demostrar que as liñas vermellas suman unha lonxitude maior que as verdes:
Nun triángulo rectángulo a diferenza entre a suma dos catetos e a hipotenusa é igual ao diámetro do incírculo.
Ningún comentario:
Publicar un comentario