Practicamente en todos os números había algún artigo e varias referencias ás matemáticas. Por exemplo no nº 34 explícase en poucas palabras a demostración mediante conos do teorema de Monge que foi obxecto doutra entrada neste blogue.
No nº 16 lera por primeira vez a demostración de Euclides da existencia de infinitos números primos. Só por estas poucas liñas xa pagaba a pena a revista. A extraordinaria demostración é unha referencia central das matematicas. Supoñamos, segundo nos indica Euclides, que só hai unha cantidade finita de números primos: 2, 3, 5, 7,...., p, onde lle chamamos p ao maior deles. Consideremos agora o número N=2・3・5・7・....・p + 1. N pode ser primo ou non selo. Se o é xa achamos un primo maior que p. Se non o é terá que ter algún divisor primo pero nin 2, nin 3, nin 5, nin 7,...., nin p son divisores de N xa que o resto da división de N por calquera deses números será 1. De aí que ese eventual divisor primo de N ten que outro maior que p que non estea na relación dada. En calquera caso ten que haber algún primo máis que os supostos, isto é, ten que haber infinitos.
Entre as páxinas de Cacumen tamén se poden achar xogos de Sam Loyd ou artigos de Henry Dudeney, mais cando se fala de xogos e de matemáticas ten que aparecer indefectiblemente Martin Gardner. Apareceron artigos seus nos exemplares nº 24, nº 26, nº 27 e do nº 32. Neste último trata sobre a cicloide e no primeiro sobre o número π. En moitos outros hai referencias a contribucións súas. En concreto no nº 33 un tal Tadeo Monevin expón e resolve o seguinte problema do divulgador norteamericano:
Un número fantasmal. Unha dama, interrogada polo seu número de teléfono contestou de forma ben curiosa: "o número termina en 4, e se vostede corre o 4 cara adiante de forma que se converta no primeiro díxito, o novo número resulta ser 4 veces o orixinal". Cal é o número telefónico da dama?
Tadeo Monevín é o pseudónimo de Jaime Poniachick (1943-2011), un matemático nacido en Uruguai moi destacado no mundo das matemáticas recreativas. En Arxentina editou da Revista del Snark, que tivo unha curta vida entre os anos 1976 e 1978. Uns anos despois sería o responsable da publicación doutra revista, El Acertijo. Poniachick era un colaborador habitual de Cacumen. El é o autor dun artigo publicado no nº 39 que me quedou gravado a lume. Presentaba o seguinte problema:
O cinto da Terra. Imaxinemos un cordel cinguido á Terra sobre o ecuador. Se lle engadimos un metro, vai quedar algo folgado, canto? Axustemos agora outra o cordel arredor dunha laranxa e despois agregámoslle tamén un metro. O sorprendente é que agora a folgura do cinto da laranxa coincide coa da Terra.
A explicación é ben simple. A lonxitude da corda inicial é 2πr. Se lle engadimos un metro será $$2\pi r+1=2\pi \left ( r+\frac{1}{2\pi } \right )$$
polo que o raio da circunferencia corda extendida supera en 1/2π unidades ao raio da circunferencia inicial independentemente do valor do raio. No caso que nos ocupa, como incrementamos a lonxitude nun metro, o raio aumentaría uns 16 cm tanto no caso da Terra como no da laranxa.
A alma de Poniachick era profundamente matemática. Este artigo continúa preguntándose que pasaría se o cordel ata cadrados de distinto tamaño, ou trigángulos, ou hexágonos,.... Remata con outra perla:
O raíl dilatado. Consideremos un raíl recto de 500 m. de lonxitude fixado nos seus extremos. Coa calor do verán expándese 2 m formando unha xiba no seu centro. Se o arqueamento que se produce é simétrico, que altura estimarías que acadará?
A resposta, como no caso anterior da Terra e a laranxa, é sumamente antiintuitivo. Poniachick indícanos que unha boa estimación desa altura poderiamos obtela supoñendo que no canto dunha curva temos dúas rectas.
Quizais o lector coñeza xa a métrica do taxi, atribuída a Minkowski. Para obter a distancia entre dous puntos debemos desprazarnos polas horizontais ou verticais determinadas por eses puntos. A distancia entre os puntos A e B da seguinte figura será 5+3=8. Sobre isto escribe Poniachick no nº 35
No seu artigo do nº 40 Poniachick propón a seguinte cuestión:
Triangulación. Dentro dun triángulo grande distribuímos 5 puntos que, xunto cos 3 vértices do triángulo utilizamos para dividilo en 11 trianguliños. Cantos triganguliños conseguiremos distribuíndo 1000 puntos dentro do triángulo grande?
As ideas aquí recollidas non o foron cun criterio sistemático. Centreime nas revistas que aínda conservo e noutras que coñecía polas portadas. Poden consultarse todos os números de Cacumen nesta entrada do blogue Espejo lúdico.
Ah! Unha última anotación. Os artigos aos que se fixo referencia ao principio que trataban sobre o libro das sucesións de Sloane, o teorema de Monge e a demostración euclidiana da existencia de infitnitos primos tamén eran da autoría de Poniachick. Ata que nestes días revisei estas revistas e me decatei disto non sabía que el foi unha das persoas que máis me influiu en que quixera estudar matemáticas. Grazas Poniachick!
Ningún comentario:
Publicar un comentario