Isto é a continuación das notas que recollín da presentación que fixo Felipe Gago o pasado 22/06/2023 da tradución que fixo do libro
"Xogando co infinito" (CCG, 2023) de Rózsa Péter. Para unha boa comprensión do que vén de seguido convén seguir a recomendación da propia matemática húngara e non saltar
a primeira parte deste relato.
Felipe Gago comentou que estaba encantando con que lle encargaran este traballo e lembrounos como el mesmo traballara cun libro doutro matemático húngaro, Geoge Pólya (1887-1985), "Matemáticas y razonamiento plausible" (Tecnos,1966) nas súas clases da materia de Metodoloxía.
Como introdución recollo a explicación da famosa fórmula de Euler doutro húngaro, Imre Lakatos (1922-1974), en concreto das primeiras páxinas do seu libro "Pruebas y refutaciones" (Alianza Editorial 1986).
Consideremos un poliedro convexo calquera. Se representa o número de caras, o número de arestas e o número de vértices, a fórmula euleriana á que nos estamos a referir é
Lakatos indícanos que a demostración que imos dar desta igualdade debémoslla a Cauchy. Faremos de topólogos, isto significa que imaxinaremos que temos un poliedro de goma. Se lle recortamos unha das caras poderemos estirar e estender a superficie restante sobre un plano que, de ser certa a fórmula por ter agora unha cara menos, debería verificar a fórmula . Para seguir mellor a argumentación, na figura 1 temos ilustrado o caso de que o poliedro fose un cubo. O seguinte paso consistiría en triangular os polígonos trazando diagonais entre os vértices do mapa plano (ver figura 2). Cada vez que debuxamos unha diagonal estamos aumentando nunha unidade o valor de A pero tamén aumenta da mesma maneira o valor de C polo que o valor de non variará neste proceso.

Agora eliminaremos os triángulos un a un. Poden darsenos dúas situacións. Tal e como vemos no triángulo marcado para eliminar na figura 3, se sacamos unha aresta, eliminaremos unha cara. Para eliminar a cara marcada da figura 4 teremos que sacar dúas arestas polo que tamén eliminaremos un punto. En calquera dos dous casos o valor de non se modifica. Repetiremos o proceso unha e outra vez ata quedarmos unicamente cun triángulo que terá 1 cara, 3 vértices e 3 arestas, de aí que o valor de será , tal e como queríamos demostrar.

Aprendiz de meiga (segunda parte)
Os polígonos regulares son figuras planas delimitadas por segmentos iguais e que determinan ángulos interiores iguais. Hai infinidade deles, un para cada número a partir do 3.

Un poliedro convexo é regular se está delimitado por polígonos regulares, sendo todas estas figuras congruentes entre si e dispostas de tal forma que en cada vértice se xuntan o mesmo número delas. Se cada unha das caras ten lados, o produto daranos pois cada aresta está compartida por dúas caras. Acabamos de realizar o mesmo proceso que aprendimos na entrada anterior: para obter o número de arestas preferimos realizar un reconto do seu dobre. Volvamos a aplicar esta idea, pero agora tendo en conta que en cada vértice se interceptan arestas. De aí o produto vai darnos pois cada aresta ten dous vértices. Aplicando estes resultados ( e á fórmula de Euler teremos:
Dividindo por e pasando o último termo do primeiro ao segundo membro:
Polo tanto o primeiro membro de [1] será sempre maior que . Supoñamos que e que . Nese caso Chegamos a unha contradición. Polo tanto polo menos un dos valores, ou , debe ser pois tampouco ten sentido que sexa menor (os polígonos deben ter polo menos 3 lados e nun vértice deben coincidir polo menos 3 arestas).
Se a igualdade [1] convértese en Polo que só poderá tomar os valores 3, 4 ou 5 (para 6 ou valores superiores daría negativo, un absurdo). Para estes valores A sería 6, 12 ou 30, o que se correspondería cun tetraedro, octaedro e icosaedro respectivamente.
Se a ecuación [1] transfórmase en Analogamente só poderá tomar os valores 3, 4 ou 5 para os que A=6, 12 ou 30 respectivamente, dando lugar a un tetraedro, un cubo e un dodecaedro. Para verificalo basta con que usemos a as fórmulas , e . Aplicándoas a cada caso obteremos os seguintes resultados:
Se revisamos todos os datos veremos que unicamente son posibles 5 poliedros regulares. En comparación co que sucedía cos polígonos é un resultado sorprendente. O máis curioso é que se chegue a esta conclusión utilizando as mesmas técnicas que as empregadas para calcular a suma . Acabamos de abrir unha fenda luminosa entre a aritmética e a topoloxía.
Ningún comentario:
Publicar un comentario