xoves, 27 de setembro de 2012

Así é imposible ser millonario

A cuestión, de artimética infantil, nin tan siquera require que pensemos na resposta exacta. De todas formas a concursante demostra o seu analfabetismo matemático.

 O seguinte caso ten algo máis de voltas e se o concursante non estaba un pouco avisado podía meter a zoca. Non se pregunta sobre cal dos números é o menor cadrado. A cuestión é saber cal destes catro cadrados:
 a:16 b:25 c:36 d:49
 é tamén a suma dos cadrados máis pequenos. Para responder cómpre lembrar o que son as ternas pitagóricas: coleccións de tres números enteiros que verifican o Teorema de Pitágoras. Dito doutro xeito, temos que pensar en tres números de forma que o cadrado dun deles é igual á suma dos cadrados dos outros dous. Velaquí algunhas desas ternas:
 (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41),
(11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29)
Con estes datos diante non nos sería difícil conseguir 15.000 $.

 

Vía Clube da Matemática   e  Zenbakiak

Ningún comentario:

Publicar un comentario