martes, 11 de xuño de 2024

Explícoche matemáticas 2024

A Comisión de Normalización Lingüística da Facultade de Matemáticas da USC resolveu o concurso Explícoche Matemáticas 2.0 da edición deste ano. Outra vez este concurso tráeme novas que me alegran inmensamente porque o traballo presentado desde o meu centro recibiu o 2º premio. As alumnas de 4º da ESO Alba Albarellos Pose, Noa Otero Calviño e Carla Prieto Loureiro do IES Antón Losada Diéguez (A Estrada), axudadas polos profesores María Paz e Emilio Villanueva tiveron a feliz idea de crear un vídeo musical co título "A trigonometría non é un tostón". Desde que vin o vídeo hai un par de meses, estaba agardando a que saíra a resolución do premio, tiña a certeza de que estas rapazas recibirían un recoñecemento.

O primeiro premio foi para o traballo de Julia Rama González co traballo "Por que a raíz cadrada de 2 é irracional?" no que, mediante o uso de recursos de animación desenvolve unha fermosa demostración da irracionalidade de $\sqrt{2}$ que publicara o portal Gaussianos o ano pasado, recollida á súa vez da canle de Michael Penn, quen dicía tela recollido dun artigo de Theodor Stermann (1902-1991) publicado no 1961. Parece ser que esta demostración "fascinou a moitos matemáticos". Paga a pena coñecela.


O último traballo premiado é o deste vídeo de Teo Calo Suárez, "As matemáticas de Google Maps e máis alá". Magníficamente editado, Teo explícanos algunhas das características máis interesantes dos grafos.

Os premios "Explícoche Matemáticas 2.0" [ver en Retallos Webl] unha exitosa iniciativa da CNL da Facultade de Matemáticas da USC, tiveron a súa primeira edición no 2012. Desde aquela, e coa salvedade do ano 2020 (o da pandemia COVID) veñen outorgándose todos os anos polo que esta é a súa 12ª edición.

luns, 3 de xuño de 2024

O horror lingüístico dos exames de Matemáticas na Selectividade

Hai uns días aparecía  por aquí unha entrevista a Ramón Lorenzo feita por Yolanda Castaño na que relataba como cando foi coordinador de COU (Curso de Orientación Universitaria) durante os cursos 1983-84 e 1984-85 tivo que enfrontarse ao rector e ao profesorado de secundaria que se opoñían á introdución do galego nos exames da selectividade. Por certo, a Consellaría parecía que nesa altura non tiña nada que ver co asunto pois só accedeu a permitir o uso do galego baixo presión. Sabémolo porque o relatou así Ramón Lorenzo. Este capítulo merecía estar incluído no Libro negro da lingua galega, de Carlos Callón

Xa que logo, o proceso de normalización das Probas de Acceso á Universidade estivo cargado de dificultades. Nos últimos tempos, baixo a héxira do decreto de prohibición e exclusión da lingua galega do ensino (decreto 79/2010), as circunstancias son propicias a cometer todo tipo de abusos coa lingua de noso. Chegou o momento de dar pasos cara atrás, a ver se ao ir a recú caemos no abismo da aniquilación da lingua. Tal parece ser o obxectivo.

Os exames da selectividade son obxecto de comentario público, os xornais están cheos de ttitulares comentando os feitos máis destacables. Que eu saiba, ningún dixo nada sobre a restra de barbaridades lingüísticas que aparecen, un ano tras outro, nos exames de Matemáticas. Céntrome nesta materia porque é a que coñezo ben, non revisei os exames doutras materias. Velaquí unha escolma do desleixo e desprezo ao galego cometido desde as Comisións de Matemáticas. Comezamos mesmo polo exame de Matemáticas aplicadas ás CCSS da convocatoria extraordinaria do ano pasado.exame de Matemáticas aplicadas ás CCSS da convocatoria extraordinaria do ano pasado. Xa aviso, custa traballo ler estes enunciados (os asteriscos son meus)

(Extraordinaria 2023) Nunha furna A hai 8 bolas verdes e 6 vermellas e noutra furna B hai 4 verdes e 5 vermellas. Lánzase un dado e se sae un número menor que 3 sácase unha bola da urna A e se sae un número maior ou igual a 3 sácase a bola da furna B. Extraese unha bola o chou,

a) Calcule a probabilidade de que a bola extraída sexa vermella. b) Sabendo que se extraeu unha bola verde, cal é a probabilidade de que saíra da furna A? c) Son independentes os sucesos “extraer bola vermella” e “a bola procede da furna A “?

Poño foto do horror porque é difícil de crer


 Se aínda non che sangran os ollos, non te preocupes, hai máis casos irritantes:  

(Extraordinaria 2021) O 40% das persoas que visitan o Pórtico da Gloria da Catedral de Santiago son españolas. Sábese ademais que 4 de cada 5 españoles están satisfeitos coa visita, mentres que, entre os non españois, non están satisfeitos coa visita o 10%.

a) Calcule a porcentaxe de persoas satisfeitas coa visita.b) Cal é a probabilidade de que unha persoa este satisfeita coa visita e non sexa española? c) ¿Son independentes os sucesos “non ser español” y “estar satisfeito ca visita”? Razoe a resposta.

(Xuño 2019) . Logo de anos de utilizalo sábese que a puntuación dun test de uso habitual en certa rama industrial segue unha distribución normal de media 74 e desviación típica 16. Nunha empresa decídese realizalo a 100 dos seus empregados. 

a) Cal é a probabilidade de que se obteña unha media muestral superior a 78 puntos, de seguirse a pauta xeral? b) E a probabilidade de que a media muestral sexa inferior a 74 puntos?

Podemos continuar coa materia de Matemáticas:

(Extraordinaria 2021) Despois de t horas de funcionamento o rendemento de unha máquina (en unha escala de 0 a 100) ven dado por a función $r\left ( t \right )=\frac{kt}{t^{2}+4}$
a) Calcule K sabendo que o rendemento as 4 horas e de 76.
b) Calcule os intervalos de crecemento e decrecemento do rendemento durante las 7 primeiras horas de funcionamento.
c) ¿En que momento se consigue o rendemento máximo?, ¿Cal e o seu valor?

(Extraordinaria 2021)Unha empresa pode vender x unidades ao mes de un determinado produto ao prezo de $518-x^{2}$ euros por unidade. Por outra parte, o fabricante ten gastos mensuais: unhos fixos de 225 euros e outros de $275x$ euros que dependen del número x de unidades.
a) Determine as funcións I(x) e B(x) que expresan os ingresos e beneficios obtidos pola produción e venda de x unidades, respectivamente. Que beneficio se obtén se se producen e se venden 10 unidades? 
b) Calcule o número de unidades que hai que producir para obter o máximo beneficio. ¿A canto ascenderían os ditos beneficios? ¿Cal sería o prezo de venda de unha unidade nese caso?

Anotación final

Se alguén tivo o valor de ler estes enunciados comprobaría que marquei como erro a expresión "desviación típica". Nalgunha ocasión xa me dixeron que era eu que era o único que usaba a forma recollida pola RAG, a saber, "desvío padrón".  Pois non estaría mal, que como desagravio, as Comisións de Matemáticas fixeran caso e comezasen a estender a expresión "desvío padrón"

luns, 6 de maio de 2024

A curiosa xeometría de Márta Svéd. O V postulado e máis alá (e 3)

Este é o terceiro e derradeiro capítulo da serie adicada a unha xeometría que a matemática húngara Márta Svéd presenta nun dos capítulos do seu libro Journey into Geometries (AMS/MAA, 1991). Os dous capítulos anteriores:

O V postulado


Sexa $\alpha$ unha circunferencia pasando por $O$ e $P$ un punto que non estea en $\alpha$. Consideremos agora $t$, a recta tanxente a $\alpha$ en $O$ e a súa perpendicular $p$. Trazamos o segmento $OP$ e a súa mediatriz $m$. O punto de intersección de $m$ e $p$, ao que chamaremos $C$, é o centro da circunferencia $\omega$ que pasa por $P$ e é tanxente a $\alpha$ en $O$. Traducido á linguaxe da W-xeometría, $\omega$ é a única W-recta paralela a $\alpha$ que pasa por un punto $P\notin \alpha$.

No caso de que $P \in t$ a propia recta $t$ sería a W-recta paralela a $\alpha$ pasando por $P$

Cando se trata de trazar W-paralelas Márta Svéd advírtenos dunha aparente inconsistencia. Se fixemos ben as cousas a relación "ser W-paralela a" debería ser unha relación de equivalencia entre W-rectas. Porén se nos fixamos na seguinte figura veremos que non se verifica a propiedade transitiva.

U-la a falacia?

Efectivamente, $a$ é paralela a $b$ (ten en conta que non se cortan en $O$ pois este punto non existe na $W$ xeometría) e $a$ e $\alpha$ son tamén paralelas. Pero é obvio que $b$ e $\alpha$ se cortan. Onde está a falacia neste argumento?

Máis alá

Nas anteriores liñas fixemos o exercicio de irmos comprobando os cinco postulados clásicos euclidianos pero podemos, e debemos, ir máis alá. Digo que debemos porque é ben sabido que Euclides non pasaría os estándares actuais para o estalbecemento dunha teoría axiomática. Non temos que remitirnos á revisión feita por Hilbert pois temos noticia que desde a época clásica houbo críticas aos Elementos. O V postulado explica cando se cortan dúas rectas, pero non temos ningún que nos indique como se cortan dúas circunferencias, compriría garantir a continuidade das liñas. Polo visto na anteriormente, na epígrafe adicada ao Postulado III, o corte de W-circunferencias compórtase da mesma maneira que o de circunferencias.

Noutras entradas demostramos que a inversión conserva os ángulos. En consecuencia a W-xeometría non só nos permite trasladar ángulos rectos (postulado IV), senón que o fai con calquera tipo de ángulos. 

Nós aquí traballamos coa formulación de Playfair do V postulado: "por un punto exterior a unha recta pasa unha única paralela". Mais sabemos que este enunciado é equivalente a que a suma dos ángulos dun triángulo sexa de 180º. Márta Svéd ofrece a explicación deste caso. Tamén explica como facer un exercicio que aínda non tratamos: o trazado de perpendiculares.

Dada unha W-recta $\alpha$ e un W-punto $P$, tracemos a tanxente $t$ a $\alpha$ por $O$ e a mediatriz $m$ do segmento $OP$ que se cortarán no punto $C$ que será o centro da circunferencia $\pi$ que pasa por $P$ e por $O$. $\pi$ é perpendicular a  $\alpha$ 

trazado de W-perpendiculares
Teriamos que considera un caso especial, se $P$ estivera na recta perpendicular a $t$ esa perpendicular tamén sería perpendicular a $\alpha$. Aquíi non me molestei moito en distinguir "perpendicular" de "W-perpendicular" porque a medida de ángulos na W-xeometría coincide coa da xeometría euclidiana usual.

xoves, 2 de maio de 2024

A curiosa xeometría euclidiana de Márta Svéd. O desprazamento (2)

Márta Svéd

Esta entrada é a continuación da anterior: A curiosa xeometría de Márta Svéd.Introdución (1) Para poder entender o que vén de seguido cómpre botarlle un ollo.

Do que se trata é de comprobar que a W-xeometría descrita nesa entrada, é unha xeometría euclidiana. Para iso estamos comprobando que verifica os postulados de Euclides. Xa o fixeramos cos tres primeiros. Continuemos.


IV postulado

A miña primeira intención foi a de despachar este postulado nun par de frases. Lembremos que xa demostramos que a inversión conserva os ángulos.  Parece que non hai máis que engadir. Pero parémonos a reflexionar.

O IV postulado di que "todos os ángulos rectos son iguais entre si". Tendo en conta que entre as nocións comúns dos Elementos de Euclides temos unha que di que "cousas iguais a unha mesma cousa son iguais entre si", que necesidade habería de engadir o IV postulado? Ademais os tres primeiros postulados remiten a unha construción con regra e compás, porén o IV non o fai. Tense especulado que pode ser unha interpolación engadida por algún copista baixo o argumento de que a igualdade de dous ángulos rectos apenas se usa nas 465 proposicións dos trece libros dos Elementos, e cando se fai, non é de xeito explícito. 

As lecturas modernas deste postulado, debidas a Klein e a Clifford,  remiten a unha interpretación do IV postulado como aquel que permitiría o desprazamento dun ángulo recto a calquera punto do plano. Na W-xeometría un W-desprazamento estará formado por W-reflexións, isto é, por inversións. Teñamos presente que estamos construíndo unha xeometría euclidiana. De aí que os desprazamentos (translacións, xiros ou reflexións) deben poder obterse a partir das reflexións. Isto é, se explicamos como son as reflexións, teremos determinados todos os desprazamentos. Pois ben, as W-reflexións serán as inversións respecto das W-rectas (isto é: respecto das circunferencias que pasan por O) 

A cuestión do desprazamento

Nunca na Grecia clásica houbo mención á problemática do desprazamento, con todo procuraremos ver que na W-xeometría non se produce unha distorsión das W-distancias cando se aplica a inversión. Para iso axudarémonos dun libro ao que fai referencia Márta Svéd, Non-euclidean Geometry, de Roberto Bonola (1874-1911), (Open Court Publishing Company, 1912).

Hai unha publicación do libro de Bonola en español, Geometrías no euclidianas (Calpe, 1923) que é a tradución da edición en italiano do 1906. Estas edicións só conteñen 3 apéndices. Desafortunadamente o que nos interesa vén no quinto apéndice, só presente na edición inglesa, pois é nese derradeiro apéndice onde Bonola traballa coa xeometría recollida por Márta Svéd.

Comprobemos que na W-xeometría se verifica o seguinte teorema

Teorema. A inversión por unha W-recta conserva a W-distancia

Pasemos a demostralo.
Sexa $AB$ un W-segmento e $\omega$ a circunferencia de centro $C$ que pasa por $O$ e $D$. Fagamos respecto desta circunferencia a inversión do W-segmento $AB$ en $A'B'$ Sexa $D$ o punto de corte de $\omega$ e a circunferencia que pasa por $A$, $B$ e $O$.

$$\frac{d_{W}\left ( AD \right )}{d_{W}\left ( A'D \right )}=\frac{\frac{AD}{OA\cdot OD}}{\frac{A'D}{OA'\cdot OD}}=\frac{AD\cdot OA'}{A'D\cdot OA}$$

O noso propósito será demostrar que este cociente é 1.

Pola definición de inversión: $$CA\cdot CA'=CD\cdot CD$$

$$\frac{CA}{CD}=\frac{CD}{CA'}$$


Entón, polo criterio LAL os triángulos $CAD$  e $CA'D$ son semellantes (comparten o ángulo en $C$ e os lados que o determinan son proporcionais). De aí que teñamos as seguintes proporcións:$$\frac{DA}{DA'}=\frac{CA}{CD}=\frac{CD}{CA'}\quad\quad [1]$$

Outra vez pola definición de inversión: $$CA\cdot CA'=CO\cdot CO$$

Análogamente teremos que os triángulos $CAO$ e $CA'O$ son semellantes e $$\frac{CA}{CO}=\frac{CO}{CA'}=\frac{OA}{OA'}\quad\quad [2]$$

Como $CD=CO$ temos que $[1]=[2]$

"$$\frac{DA}{DA'}=\frac{CA}{CD}=\frac{CD}{CA'}=\frac{CA}{CO}=\frac{CO}{CA'}=\frac{OA}{OA'}$$

Fixándonos na primeira e última proporcións $\frac{DA}{DA'}=\frac{OA}{OA'}$

Tal e como anunciamos ao comezo da demostración, isto implica que $d_{W}\left ( AD \right )=d_{W}\left ( A'D \right )$

Analogamente $d_{W}\left ( BD \right )=d_{W}\left ( B'D \right )$

Daquela $$d_{w}\left ( AB \right )=d_{W}\left ( AD \right )-d_{W}\left ( BD \right )=d_{W}\left ( A'D \right )-d_{W}\left ( B'D \right )=d_{W}\left ( A'B' \right )$$

$$\frac{d_{W}\left ( AD \right )}{d_{W}\left ( A'D \right )}=\frac{\frac{AD}{OA\cdot OD}}{\frac{A'D}{OA'\cdot OD}}=\frac{AD\cdot OA'}{A'D\cdot OA}$$

Con isto quedaría demostrado o teorema. En conclusión, o desprazamento na W-xeometría conserva tanto ángulos como distancias.

No seguinte e derradeiro capítulo desta serie, abordaremos o comportamento da W-xeometría en relación co V postulado de Euclides.

luns, 29 de abril de 2024

A curiosa xeometría euclidiana de Márta Svéd. Introdución (1)

Comeza aquí unha serie de tres entradas sobre unha curiosa xeometría. Ben, en realidade non é este o principio. Este xa foi publicado neste mesmo blogue noutras tres entradas:

  • A proxección estereográfica reencontrada. Aquí explícase en que consiste a proxección estereográfica e danse algunhas propiedades da mesma, como a de que leva circunferencias en circunferencias ou que conserva os ángulos.
  • A inversión proxectada. Nesta entrada relátase en que consiste a inversión respecto dunha circunferncia e como se pode obter a inversión a partir da proxección estereográfica. Isto último permite revisar cal é a inversión de circunferencias, tanto das que pasan polo centro da circunferencia inversiva como as que non; tamén explica por que a inversión conserva ángulos.
  • Un regalo da xeometría inversiva. Esta ligazón lévanos a unha fórmula que relaciona a lonxitude dun segmento $AB$ coa do seu inverso $A'B'$. Como regalo obtemos unha fermosa demostración do teorema de Ptolomeo.

A curiosa xeometría de Márta Svéd

No verán pasado fun ao curso da USC "Matemáticas húngaras", organizado polo profesor Jorge Losada Rodríguez. Unha das conferencias correu a cargo da coñecida divulgadora Marta Macho, da Universidade do País Vasco, trataba sobre as mulleres matemáticas de Budapest. Falou da vida, obra e aventuras de moitas mulleres húngaras. Unha delas foi a Marta Wachsberger (1910-2005) , coñecida como Marta Svéd despois do seu matrimonio, fuxiría a Australia no 1935, escapando do horror nazi. Con 75 anos defendería a súa tese doctoral na Universidade de Adelaida. 

Marta Macho deunos a coñecer un curioso libro escrito por Marta Svéd, Journey into geometries (AMS/MAA, 1991). Trátase dun orixinal diálogo entre un tal Dr. Whatif, Lewis Carroll, autor de Alicia no país das marabillas, a propia Alicia e moitos outros dos personaxes do famoso libro de Carroll (Humpty Dumpty, Tweedledee e Tweedledum, a Raíña Vermella, a Lebre de Marzo,...). Alicia xoga o papel de alumna avantaxada; Lewis Carroll representa as matemáticas decimonónicas. O significativo antropónimo, Dr. Whatiff,  desvela o carácter principal dun individuo sempre disposto a innovar e a xogar con novas hipóteses. Para rebaixar as expectativas de quen estivera pensando en ler este libro, cómpre que saiba que nel hai moitas matemáticas ata o punto de que cada capítulo remata cun boletín de exercicios. O libro conta cun pequeno prefacio do xeómetra H.S.M. Coxeter (1907-2003) e cunha boa colección de ilustracións que axudan moito á lectura. Estas son obra do tamén matemático John Stilwell (1942-)

En Journey into geometries os personaxes viaxan por distintas ideas xeométricas. No primeiro capítulo trabállase a potencia dun punto respecto dunha circunferencia; o segundo trata sobre a inversión; o cuarto ocúpase da xeometría hiperbólica, o quinto da xeometría do disco de Poincairé e o sexto e último capítulo está dedicado á xeometría proxectiva. 

E o terceiro? O terceiro, desde o meu punto de vista, é o máis interesante de todos. Nel Marta Svéd presenta unha xeometría euclidiana dunha fasquía extravagante. No libro esa xeometría recibe o nome de "xeometría do Dr. Whatif". Por simplicidade referireime a ela como xeometría W (en referencia ao Dr., ou quizais, aínda mellor, en referencia a Wɐɹʇɐ). Co fin de  distinguilos dos conceptos da xeometría euclidiana usual aos da W-xeometría denominareinos usando ese símbolo: W-puntos, W-rectas, W-rectas, W-distancias...

A W-xeometría é unha xeometría do plano na que eliminamos un punto ao que chamaremos punto O. En compesación engadimos un novo punto, o do infinito, $P_{\infty }$ . As W-rectas serán as circunferencias e as rectas que pasen por O. Estas últimas serán as W-rectas que conteñan o punto do infinito. Tendo en conta que podemos considerar as rectas como circunferencias de raio infinito estariamos en disposición de resumir dicindo que as W-rectas son as circunferencias que conteñen a O (pero sen o punto O, por suposto). Así, os W-segmentos serán ben arcos de circunferencia, ben segmentos usuais nas rectas que pasan polo punto do infinito, ben segmentos que conteñan ou teñan como extremo ao punto do infinito. Os W-ángulos coincidirán cos ángulos da xeometría euclidiana usual. 

Pasemos a comprobar que a W-xeometría é euclidiana, isto é, que verifica os cinco postulados propostos por Euclides nos Elementos.

I postulado


Un dos resultados da xeometría plana máis coñecidos é o que nos di que por tres puntos sempre podemos trazar unha circunferencia.  Aplicando este resultado á W-xeometría teriamos que dados dous W-puntos $A$ e $B$, e dado $O$, poderemos trazar a W-recta que pasa por eles. Se están aliñados volveremos a recordar que podemos considerar a recta como unha circunferencia de raio infinito.l Dado un punto calquera $A$ e o punto do infinito $P_{\infty }$ sempre podemos trazar a recta que pasa por eles pois é a recta euclidiana que pasa por $A$ e por $O$ Así que a W-xeometría verifica o I postulado euclidiano.

Postulado II

 Consideremos unha circunferencia que pase por O (da que eliminamos precisamente o punto O). Dado nela un arco de circunferencia $AB$ sempre o poderemos ampliar a outro arco maior $A'B'$ en calquera dos dous sentidos.
Traduzamos isto en termos da W-xeometría. Teremos que dado un W-segmento $AB$ poderemos prolongalo a outro $A'B'$. Este é o II postulado da xeometría euclidiana. Se partimos dunha recta que pasa por O, pode suceder que o segmento $AB$ sexa finito, nese caso basta con remitirnos á xeometría euclidiana clásica 
Algúns casos do Postulado II

No caso de que o segmento conteña a $P_{\infty }$, tampouco teremos dificultades tanto para ampliar o segmento $AB$ a $A'B'$ como o segmento $AP_{\infty }$ a outro $AP_{\infty }'$
Postulado II con punto do infitnito

Postulado III

O III postulado di que debemos ser quen de "debuxar unha circunferencia con calquera centro e distancia". Velaquí que debemos explicar como medir distancias nesta peculiar xeometría. Marta Svéd ofrécenos unha analoxía para achegarnos a este tópico.

Supoñamos que, sen usar o compás,  queremos trazar unha circunferencia de centro $C$ e pasando por un punto $P$ na "anticuada" xeometría euclidiana. Poderiamos facelo da seguinte maneira. Consideremos unha recta $r$ pasando por $C$ para obter $P'$, a reflexión de $P$ respecto de $r$. $P'$ será outro punto da circunferencia. Xa que logo, a circunferencia estará formada por todas as reflexións de $P$ respecto de todas as rectas pasando polo centro $C$. Pois ben, a W-reflexión non será outra cousa que a inversión. Unha W-circunferencia poderá obterse invertendo un punto $P$ polas circunferencias que pasan por $O$ e por $C$. 

Unha circunferencia que pase por $O$ e $C$ terá o seu centro na mediatriz $m$ do segmento $OP$. Cada unha delas invertirá un punto $P$ noutro $P'$ e irá xenerando a W-circunferencia de centro $C$. Ao conxunto de todas estas circunferencias coñéceselle como feixe elíptico de circunferencias. Para trazar a W-circunferencia de centro $C$ pasando por $P$ podes mover o punto $X$ ou premer no play.

Se xogas un pouco coa aplicación verás que a W-circunferencia é unha circunferencia euclidiana pero o seu centro $C$ non coincide co centro na xeometría euclidiana. A razón é que as distancias na W-xeometría non coinciden coas euclidianas. A chave para a definición das W-distancias está na fórmula que vimos noutra ocasión que nos indica cal é a lonxitude dun segmento $A'B'$ que resulta da inversión doutro $AB$ por unha circunferencia de raio $R$:  $$A'B'=\frac{R^{2}\cdot AB}{OA\cdot OB}$$

Para simplificar tomaremos $R=1$ e definiremos a W-distancia entre dous puntos $A$ e $B$ como $$ d_{W}\left ( AB \right )=\frac{ AB}{OA\cdot OB}$$

Desta definición é inmediato verificar tanto que esta nova definición de distancia é simétrica como que obteremos sempre números positivos (só será 0 se $A=B$). A desigualdade triangular da W-distancia é unha consecuencia da desigualdade de Ptolomeo

Quedan por comprobar os dous postulados máis polémicos de Euclides. Farémolo nas dúas seguintes entradas ([2] e [3])

luns, 15 de abril de 2024

Xosé Rodríguez González

Houbo un tempo, na historia deste blogue, no que adicaba entradas a recompilar información sobre personaxes destados das matemáticas. Foi a época en que se homenaxeaba a algún matemático galego naquelas Xornadas da Ciencia en Galego que xurdiran para poñer en evidencia a prohibición do uso desta lingua nas materias científicas derivada do funesto decreto 79/2010, o de restricción do uso do galego no ensino non universitario. Podemos lembrar os casos de María Wonenburger, Domingo Fontán e Ramón Verea ([1], [2], [3] e [4])
Nesta ocasión, aproveitando o nomeamento por parte da RACG do científico do ano,  achegamos unha entrada de recursos a Xosé Rodríguez González (1770-1820), quen desde o traballo de ingreso no Seminario de Estudos Galegos de D. Ramón María Aller, é coñecido como o matemático de Bermés.


Webs

Prensa
Blogues:

Documentos:

Audio

Vídeos

Publicacións

Xornadas

Nota

É moi probable que despois da publicación desta entrada xurdan máis recursos sobre Xosé Rodríguez. Aínda que non é unha práctica habitual neste blogue, intentarei engadilos na medida do posible.

venres, 29 de marzo de 2024

Fraccións continuas teito e as montañas de Galicia

por Andrés Ventas

Fraccións continuas teito

Unha fracción continua teito ($fct$) é unha fracción continua na que usamos a función teito para obter os seus coeficientes. Os seus converxentes $\frac{p_i}{q_i}$ obtéñense mediante unha recorrencia de resta,

$p_{-1}=1, \ p_{0}=c_0, \ p_i=c_i p_{i-1} - p_{i-2}$.

$q_{-1}=0, \ q_{0}=1, \ q_i=c_i q_{i-1} - q_{i-2}$.

Para o cálculo da fracción continua, se $x$ é racional usamos o algoritmo de Euclides coa función teito e se o número e irracional usamos unha iteración sobre o inverso de $x$ restando en cada paso o valor teito do resultado.

Hai varias notacións.É moi cómoda a reducida, choendo os coeficientes entre símbolos da función teito $\lceil c_0, c_1, c_2, c_3, \cdots \rceil$.

A notación tradicional é \[ \mathrm{x}= c_0-\cfrac{1}{c_1-\cfrac{1}{c_2-\cfrac{1}{c_3- \cdots\vphantom{\cfrac{1}{1}} }}} \]

E a maiores hai outra notación semireducida $c_0 - \dfrac{1}{c_1 \ -} \ \dfrac{1}{c_2 \ - } \ \dfrac{1}{c_3 \ - } \ \dfrac{}{\ldots} $,

Vexamos dous exemplos de cálculo:

Con Euclides teito, calculamos a $fct$ de $\dfrac{93}{20}$ e os seus converxentes,

Cociente teitoresto
9320$c_0=5$-7
207$c_1=3$-1
71$c_2=7$0
537
$p_i$ 1 51493
$q_i$ 0 1320

Así $\dfrac{93}{20}=\lceil 5, 3, 7 \rceil = 5-\cfrac{1}{3-\cfrac{1}{7\vphantom{\cfrac{1}{1}} }}$. (Como fracción continua regular $\dfrac{93}{20}=[4, 1, 1, 1, 6 ]).$

Agora con inverso iterativo, calculamos $\sqrt{3} \approx 1.7320$ e os seus converxentes,

$c_i = \lceil x_{i-1} \rceil$ $r_i=c_i - x_{i-1}$$x_i = 1/r_i $
$x_{-1} \approx 1.7320$
$c_0=2$0.26803.7320
$c_0=4$0.26803.7320
$c_0=4$0.26803.7320
$\ldots$$\ldots$ $\ldots$
2444$\cdots$
$p_i$ 1 272697$\cdots$
$q_i$ 0 141556$\cdots$

Así temos $\sqrt{3}=\lceil 2, 4, 4, \cdots \rceil$,

sendo $\sqrt{3} \approx 1.7320$ e o cuarto converxente $\dfrac{97}{56} \approx 1.7321$.

Comparten moitas propiedades coas fraccións continuas regulares, mais evidentemente teñen as súas pecularidades. No libro de Sergey Khrushchev, Orthogonal Polynomials and Continued Fractions temos un minucioso tratado.

As $fct$ converxen sempre polo lado superior.

Nalgúns casos as $fct$ dan o menor número de pasos, aínda que normalmente son peores en número de pasos. De feito non cumpren coa constante de Khinchin, porque se atoan nos coeficientes, fundamentalmente no $2$.

No 1657 Brouncker atopa, seguindo outro camiño, unha fracción continua teito para solucionar a ecuación de Pell $x^2 - 2y^2 =1$, onde as solucións son certos converxentes da $fct=\lceil 6, 6, 6, \ldots \rceil$, con recorrencia $x_n=6x_{n-1}-x_{n-2}$ e por tanto a solución consiste en resolver a ecuación $x=6-\dfrac{1}{x}$, que dá $x=3+2\sqrt{2}$. (Lema 2.21 do libro de Khrushchev).

Se se permiten coeficientes en $\mathbb{Q}$ ou mesmo en $\mathbb{C}$ os resultados son máis interesantes aínda, serían funcións teito xeneralizadas que van en paralelo coas fraccións continuas xeneralizadas.

Fraccións continuas mixtas

Na fracción continua mixta ($fcm$) usamos a función teito ou chan en cada paso en función do menor residuo. A notación sería igual que a da fracción continua regular mais levando un superindice "$\mathbf{-}$" sobre os coefcientes que se obteñan coa función teito $[ c_0, c_1^{\mathbf{-}}, c_2^{\mathbf{-}}, c_3, \cdots ]$.

Para obter os seus converxentes $\dfrac{p_i}{q_i}$ temos recorrencia de suma ou resta en función do superíndice do coeficiente $c_{i-1}$, restamos cando $c_{i-1}^{\mathbf{-}}$ ten superíndice negativo.

$p_{-1}=1, p_{0}=c_0, p_i=c_i p_{i-1} \pm p_{i-2}$.

$q_{-1}=0, q_{0}=1, q_i=c_i q_{i-1} \pm q_{i-2}$.

(Signo negativo se $c_{i-1}$ ten superíndice $\mathbf{-}$).

Este tipo de fracción dá o menor número de pasos no algoritmo de Euclides e igualmente dá o menor número de termos na fracción continua. Outra vez vexamos dous exemplos.

Con Euclides mixto, calculamos a $fcm$ de $\frac{2114}{61}$, e os seus converxentes,

Cociente teito ou chanresto
211461$c_0=35^{\mathbf{-}}$-21
6121$c_1=3^{\mathbf{-}}$-2
212$c_2=10$ 1
21$c_3=2$ 0
$35^{\mathbf{-}}$$3^{\mathbf{-}}$ 102
$p_i$ 1 3510410052114
$q_i$ 0 132961

Por tanto $\dfrac{2114}{61}=[ 35^{\mathbf{-}}, 3^{\mathbf{-}}, 10, 2]$.

Xa temos unha moi boa cousa positiva das $fcm$ pois obtemos o $mcd$ nun menor número de pasos e por tanto tamén o multiplicativo modular inverso.

Constantes das montañas de Galicia

Chámanse medias ou constantes metálicas os valores das fraccións continuas que teñen todos os seus coeficientes iguais, a máis famosa precisamente a proporción aurea $\varphi=\frac{1+\sqrt{5}}{2}=1.618033\ldots$ con fracción continua regular $[1,1,1,1, \ldots]$.

Así que imos aproveitar para definir, usando as $fct$ de forma similar, as constantes das montañas de Galicia. Temos que $fct=\lceil 3, 3, 3, \ldots \rceil = \frac{3+\sqrt{5}}{2}=2.618033\ldots$ que como vemos é $\varphi + 1$ e a esta constante ímoslle chamar Pena Trevinca pois o nome évos ben acaído para ese conxunto de treses.

É fácil demostrar que o valor para calquera $fct$ cos coeficientes repetidos é $$\lceil c, c, c, c, \ldots \rceil=\dfrac{c+\sqrt{c^2-4}}{2}$$ por tanto podemos asignar unha constante a cadanseu monte:

O caso da $fct=\lceil 2, 2, 2, \ldots \rceil$ é particular pois ten como solución unha constante enteira $1$, así que imos deixar esa constante para o Monte da Guía en Vigo que ten só $100$ metros.

$fct$ ConstanteMonteAltura
$ \lceil 2, 2, 2, \ldots \rceil$ $\frac{2+\sqrt{0}}{2}=1$ Monte da Guía (Vigo) 100 metros
$ \lceil 3, 3, 3, \ldots \rceil$ $\frac{3+\sqrt{5}}{2}=2.618033$ Pena Trevinca (Serra do Eixo) 2127 metros
$ \lceil 4, 4, 4, \ldots \rceil$ $\frac{4+\sqrt{12}}{2}=2+\sqrt{3}=3.732050$ Cuíña (Serra dos Ancares) 1987 metros
$ \lceil 5, 5, 5, \ldots \rceil$ $\frac{5+\sqrt{21}}{2}=4.791287$ Manzaneda (Serra da Queixa) 1781 metros
$ \lceil 6, 6, 6, \ldots \rceil$ (Brouncker) $\frac{6+\sqrt{32}}{2}=3+2\sqrt{2}=5.828427$ Formigueiros (Serra do Courel) 1639 metros
$ \lceil 7, 7, 7, \ldots \rceil$ $\frac{7+\sqrt{45}}{2}=6.854101$ O Turrieiro (Serra da Enciña da Lastra) 1612 metros
$ \lceil 8, 8, 8, \ldots \rceil$ $\frac{8+\sqrt{60}}{2}=4+\sqrt{15}=7.872983$ Monte Faro (Serra do Faro) 1187 metros
$ \lceil 9, 9, 9, \ldots \rceil$ $\frac{9+\sqrt{77}}{2}=8.887482$ O Cadramón (Serra do Xistral) 1056 metros

Bibliografia

  • Sergey Khrushchev, Orthogonal Polynomials and Continued Fractions
  • Wikipedia, Fracción continua
  • Wikipedia Fraccións continuas xeneralizadas.
  • Wikipedia, Constante de Khinchin
  • Wiwipedia, Metallic Means