domingo, 8 de febreiro de 2026

Adiviña fibonacciana

Hai tempo que por unha ou por outra razón non publico no blogue, uns 4 meses. Grazas a Andrés Ventas, o colaborador que apareceu por aquí hai un par de anos, a miña falta non se notou tanto porque el seguiu achegando entradas durante todo este tempo. Este período de sequía fíxome ver algo sobre o que me teño interrogado en varias ocasións, se me resultará traumático abandonar este blogue. Comprobei que non. Como envorco por aquí o que quero e cando me peta, decateime de tampouco hai dor ningunha en deixar de facelo cando non me satisfaga elaborar novas entradas. A pesar de toda esta introdución, creo que aínda non chegou ese momento, así que, sen darlle máis voltas vou deixar de seguido un novo retallo. 

Tal e como se pode adiviñar polo título, o asunto ten que ver coa sucesión de Fibonacci. Aproveito inchar o peito co contido deste blogue lembrando a entrada "Problemas consecutivos" dedicada ben a esta sucesión, ben ao seu amigo o número áureo. Alí, despois dunha redación inicial de 9 problemas, fun engadido en sucesivas ampliacións outros tantos problemas arredor do mesmo tópico. Desta vez apeteceume adicarlle unha espazo a un novo problema. 

A sucesión de Fibonacci é o exempolo clásico de sucesión definida recursivamente. Dados os dous primeiros termos, os seguintes serán a suma dos dous anteriores. $$f_{1}=0, \quad f_{2}=1, \quad f_{n+2}=f_{n}+f_{n+1}$$

Daquela teremos a seguinte seguinte archocoñecida sucesión: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...$

Hai moitas outras sucesións que se poden construír ao estilo Fibonacci; basta con que os dous valores iniciais sexan outros. Por exemplo, con $f_{1}=4$ e $f_{2}=9$ obteremos a sucesión fibonacciana $4, 9, 13, 22, 35, 57, 92, 149, 241, 420,...$

Adiviñación da suma de Fibonacci. Pídelle a un amigo que xenere os 10 primeiros termos dunha sucesión fibonacciana comezando polos números enteiros $a$ e $b$ da súa escolla e que sexan descoñecidos para ti. Entón dille que che diga o valor dun deses 10 termos. Daquela ti debes ser quen de adiviñar a suma deses 10 termos. Que termo debes preguntar? Como determinar esa suma?

Na vindeira entrada darei a solución e a referencia do libro no que recollín o problema.

Ningún comentario:

Publicar un comentario