luns, 12 de maio de 2025

Os logaritmos

Introdución aos logaritmos

Vou facer unha confesión terrible. Eu fixen a carreira de Matemáticas sen saber o que eran os logaritmos. Así aprendín que non hai que botar as mans á cabeza cando alguén descoñece un concepto fundamental, sempre e cando teña ferramentas que lle permitan esquivar esta eiva. En efecto, tiña que ter estudado os logaritmos cando cursei 2º de BUP. O profesor explicáranolos pero como foi a final de curso decidiu non facer exame. A pesar de que daquela tiña xa certa querencia pola materia, non mirei nin a primeira vez os apuntes. Así aprendín que se un quer forzar o estudo dun tema, debe telo en conta á hora de avalialo. 

Ao ano seguinte tiven outro profesor que supuxo que todos tiñamos adquiridos os fundamentos dos logaritmos así que cando lle tocou presentarnos a función logarítmica fíxoo de súpeto. Con todo, tivo a boa idea de escribir no encerado as propiedades fundamentais dos logaritmos. A partir dese momento para min os logaritmos eran iso, unha función que verificaba unhas curiosas propiedades.

Con estes antecedentes o día que me tocou a min explicar o que eran os logaritmos enfronteime a un gran problema; antes tiña que sabelo eu. Así que tiven que estudalo por vez primeira. Todas estas circunstancias leváronme a ter que reflexionar moito sobre o seu concepto. Tiña a man moitos libros de texto, pero nunca cheguei a usalos na aula, entre outras razóns porque normalmente os libros de texto non viñan escritos en galego. En todo caso, incluso no breve lapso de tempo no que dispoñiamos de textos de Matemáticas en galego, nunca fun quen de adaptarme á súa prosodia. Pode que sexa defecto meu, non o nego. Con todo prefiro contar as cousas da mesma maneira que me gustaría que mas contaran a min. Sempre perdín moito tempo en intentar ser o máis coidadoso na escolla das palabras e as ideas para as explicacións. De seguido conto como explico en que consisten os logaritmos. Normalmente fágoo en 4º da ESO, aínda que dependendo das circunstancias, pode que teña que adiar o relato para o curso seguinte. 

En primeiro lugar presento unha táboa de potencias de 2 como a seguinte

$n$ $2^{n}$$n$ $2^{n}$$n$ $2^{n}$$n$ $2^{n}$
$0$ $1$ $8$ $256$ $16$ $65.536$ $24$ $16.777.216$
$1$ $2$ $9$ $512$ $17$ $131.072$ $25$ $33.554.432$
$2$ $4$ $10$ $1.024$ $18$ $262.144$ $26$ $67.108.864$
$3$ $8$ $11$ $2.048$ $19$ $524.288$ $27$ $134.217.728$
$4$ $16$ $12$ $4.096$ $20$ $1.048.576$ $28$ $268.435.456$
$5$ $32$ $13$ $8.192$ $21$ $2.097.152$ $29$ $536.870.912$
$6$ $64$ $14$ $16.384$ $22$ $4.194.304$ $30$ $1.073.741.824$
$7$ $128$ $15$ $32.768$ $23$ $8.388.608$ $31$ $2.147.483.648$
$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$$n=log_{2}N$ $N=2^{n}$

Nesta táboa hai que ler as columnas de dúas en dúas. Na columna da esquerda aparece un número $n$ e na segunda o resultado de elevar 2 a ese número, $2^{n}$. Pero tamén podemos ler as columas de dereita a esquerda, así os números da columna da esquerda son os logaritmos en base 2 dos da  correspondente columna da dereita. 

Por exemplo, como $2^{5}=32$ diremos tamén que o $log_2{32}=5$ (o logaritmo en base $2$ de $32$ é $5$).

Cálculo de produtos

Por unha vez imos ter unha clase sen calculadora. Pensemos, por poñernos en situación, que estamos no século XVI. A pesar de non ter calculadora vémonos na obriga de calcular un produto. Non é difícil pero é bastante pesado. Por iso imos intentar simplificar os cálculos facendo uso da táboa das potencias de 2 (ou dos logaritmos en base 2). Queremos calcular o produto $512\cdot8.192$. Para iso debemos buscar na táboa os seus logaritmos. Neste caso o $log_{2}812=9$ e o $log_{2}8.192=13$. Estamos vendo que os logaritmos non son outra cousa que os expoñentes. Agora vén o truquiño. Sumamos os logaritmos $9+13=22$ (se prefires podemos dicir que sumamos os expoñentes) e agora miramos na táboa buscando nas columnas de esquerda o valor $n=22$, daquela o produto é xusto o seu compañeiro da columna da dereita: $512\cdot8.192=4.194.304$. A razón é ben simple:

$$512\cdot8.192=2^{9}\cdot 2^{13}=2^{9+13}=2^{22}=4.194.304$$

Acabamos de ver que os logaritmos transforman os produtos en sumas. Isto é lóxico porque os logaritmos son expoñentes e para calcular o produto de dous números coa mesma base, sumamos os expoñentes. Escrito máis estritamente

$$log_{2}\left( M\cdot N \right)=log_{2}M+log_{2}N$$

No noso caso: $$log_{2}\left( 512\cdot 8.192 \right)=log_{2}512+log_{2}8.192$$

ou $$9+13=22$$


Cálculo de divisións

Continuamos no século XVI (sen calculadoras). Se o procedemento do cálculo de divisións é bastante tedioso e pesado, a realización de divisións a man consiste nun algoritmo que multiplica estas dificultades. Estamos pensando en facer unha división usando números bastante grandes. Os logaritmos, isto é, os expoñentes, volverán a simplificarnos as cousas. Se o cálculo de produtos (complicados) se reduciu ao de sumas (fáciles) é lóxico que o cálculo de divisións (moi complicadas) se reduza a unha (simple) resta. Por exemplo, para facer a división $8.192: 512 $ chega con restar os logaritmos destes números. Vexámolo: $13-9=4$. Velaí que o resultado da división será o número que na táboa lle asignamos ao $4$, isto é $16$. Repasemos as razóns de que isto sexa así:

$$\frac{8.192}{512}=\frac{2^{13}}{2^{9}}=2^{13-9}=2^{4}=16$$

Escribamos estas ideas en forma de logaritmos:

$$log_{2}\left( \frac{M}{N} \right)=log_{2}M-log_{2}N$$

$$log_{2}\left( \frac{8.192}{512} \right)=log_{2}8.192-log_{2}512$$

$$13-9=4$$

Isto é, os logaritmos transforman as divisións en restas.

Chegou o momento de facer uns exercicios para practicar o cálculo de produtos e divisións mediante o uso de logaritmos. Axudarémonos da táboa (de logaritmos) que presentamos máis arriba.

1. Calcula $128\cdot 131.072$

2. Calcula $2.048\cdot 4.096$

3. Calcula $2.097.152 : 131.072$

4. Calcula $262.144 : 256$

5. Calcula $ 129 \cdot 127$ 

6. Calcula $154 \cdot 8744$ 

Non, non me equivoquei no último. Xa o explicarei noutra entrada.

2 comentarios:

  1. Pois eu foi unha das, poucas, cousas que aprendín na mili de Artillería que logo serviume para valorar na aula a importancia dos logaritmis. Complicaban bastante as fórmulas tomando logaritmis e polo tanto había logo que achar o antilogaritmo. A cambio produtos e cocientes eran sumas e restas, máis doadas de calcular e sobre todo ter un control forte do resultado.Os erros grandes saían caros!

    ResponderEliminar
    Respostas
    1. Entón seguro que traballaches con táboas de logartimos. Cando eu fixen o bacharelato, aínda que había profesorado que as seguía usando, eu nunca cheguei a usalas

      Eliminar