mércores, 4 de maio de 2022

Escolma de problemas de Matemáticas na Raia

A raíz da última entrada estiven remexendo nos problemas propostos no concurso Matemáticas na Raia que organizan anualmente AGAPEMA e a APM desde o ano 2015. En cada edición propóñense 5 problemas que un grupo de alumnos de 3º da ESO (9º curso en Portugal) deben resolver durante 90 minutos. Dos 40 problemas propostos nas 8 edicións fixen unha escolla persoal que paso a compartir.

Para resolver este primeiro problema comecei a trazar segmentos sobre a imaxe para trazar unha liña de abordaxe ata que, de súpeto un aire de inspiración me trouxo de golpe a solución que presento aquí. Se queres intentar resolvelo por ti mesmo, non uses o esvarador!

2015. Problema 1. Circunferencia oprimida. Observade agora na figura seguinte a unha circunferencia "oprimida" e lede atentamente as súas lamentacións: "Son unha pobre circunferencia oprimida por 2 triángulos equiláteros. Son tanxentes a cada un dos lados do triángulo grande. E cada un dos tres vértices do triángulo máis pequeno atópase na miña circunferencia. Ás veces pregúntome cantos triángulos pequenos serían necesarios para igualar a superficie do triángulo grande. Que pensades vos Pensade e explicade o voso razoamento.




Quizais os rapaces que participaron na edición do 2016 quedaron algo despistados ao non ofrecérselle a altura dos botes de tomate. Pero a min foi outra cousa a que me chamou a atención. A ver se lle pasa o mesmo ao eventual lector desta entrada. Velaquí o enunciado:


2016. Problema 5. Fabricante de salsa de tomate listo.Un fabricante de salsa de tomate embala latas de 10 cm de diámetro en caixóns cadrados de 80 cm de lado. 

Como un estudo de mercado lle indicou que esas latas eran demasiado grandes, o fabricante decide cambialas por outras cilíndricas, como as anteriores e da mesma altura pero de 5 cm de diámetro. Para embalar as latas, o fabricante segue utilizando as mesmas caixas cadradas de 80 cm de lado, para aforrar cartos. 

A) As caixas que conteñen as novas latas pequenas, conterán máis ou menos salsa de tomate que cando estaban cheas de latas grandes? (Non se terá en conta o espesor das paredes das latas) 

B) E se as latas foran de 6 cm de diámetro. As caixas que conteñen as novas latas non tan pequenas, conterán máis ou menos salsa de tomate que cando estaban cheas de latas grandes?

 C) Cales deben ser as dimensións en valores enteiros do diámetro das latas, para que sempre usemos a mesma cantidade de salsa de tomate para encher as caixas?

Que? Nada estraño?

O problema está pensado para que se responda que podemos colocar 8×8=64 latas de 10 cm de diámetro ou 16×16=256 latas de 5 cm de diámetro para despois pasar a facer un traballo cos divisores de 80. Pero...non collerán máis latas dentro da caixa? Pénsao antes de facer scroll.



O certo é que si. Neste portal que recompilaba os mellores empaquetamentos de círculos no cadrado unidade, indica como se poden colocar 68 círculos de 10 cm e 280 círculos de 5 cm dentro do cadrado de 80×80.


Efectivamente, sen pretendelo fomos bater cun problema realmente difícil, tanto que aínda non ten solución. No libro Unsolved problems in geometry preséntase a cuestión de dúas formas distintas pois o problema do empaquetamento de círculos nun cadrado é equivalente ao do espallamento de puntos nun cadrado. Neste segundo caso trataríase de colocar n puntos nun cadrado unitario de forma que a menor distancia entre eles sexa máxima. Se unha colección de n puntos están a polo menos unha distancia d, eses puntos poden servir como centros de círculos de raio d para empaquetar n círculos nun cadrado de lado 1+d. Velaquí unha ilustración deste feito para o caso n=5.
A distancia d=$\frac{\sqrt2}{2}$

Como efecto colateral vou deixar proposto o seguinte problema:
Problema colateral. Determinar a máxima distancia á que se poden colocar tres puntos sobre o cadrado unidade

Na seguinte proposta explícase como calcular os arranxos de 5 elementos tomados de 4 en 4. Faise para calcular todas as posibles matrículas de catro cifras impares diferentes. O sorprendente é a pregunta. A pesar de ser un resultado de matemáticas elementais, nunca reparara nel.

2018. Problema 4. Matrículas dos automóbiles. Adriano interesábase polos números das matrículas dos automóbiles do seu país, máis concretamente por todos aqueles compostos por catro cifras impares todas diferentes, por exemplo, 3175. Adriano calculou a cantidade de tales números. En efecto, como existen cinco cifras impares 9, 7, 5, 3, e 1, existen cinco formas diferentes de escoller a cifra da dereita, catro formas de escoller a seguinte para que sexa diferente da anterior, tres para escoller a terceira e dúas para escoller a cuarta. Total: 5 x 4 x 3 x 2 = 120. Con todo, Adriano non chegou a calcular a suma destes 120 números. Non obstante, é posible facer este cálculo directamente. Como? Xustificade a vosa resposta

Na última proposta volvín a decidirme por non engadir a imaxe que ofrecían na edición de Matemáticas na Raia. Aquí ofrezo unha que dá máis pistas: que nos indican os puntos vermellos? 
Nesta ocasión esperaba que preguntaran por un punto dos eixos ou da diagonal do primeiro cuadrante como os que aparecen na ilustración. Non é o caso, así que supoño que isto despistaría a moitos dos que o abordaron. Cousas de que o ano 2018 non fose nin un cadrado, nin unha unidade menor que un cadrado, nin tan siquera a suma dun cadrado e a súa raíz. Un ano ben anódino para poñer problemas.
2018. Problema 5. Un robot circula por un plano coordenado da forma que marca o debuxo. 
Así, despois de chegar ao punto (7,0), avanzará unha unidade en horizontal ata o punto (8,0), logo subirá en vertical 8 unidades ata o punto (8,8) e retrocederá en horizontal oito unidades ata o punto (0,8), e así sucesivamente. 
Se cada unidade do plano mide 1 centímetro, en que coordenadas se atopará cando leve percorridos exactamente 2018 centímetros?


Outra vez, imaxe con axuda

Ningún comentario:

Publicar un comentario