mércores, 8 de decembro de 2021

Viète e a ecuación de van Roomen: segundo membro

Por que un blogue de matemáticas en galego? Hai varias razóns, unha delas é o compromiso ético coa normalización lingüística. Como toda a nosa relación co mundo está intermediada pola lingua, calquera actividade é unha oportunidade para que estea presente. Hai outra razón máis persoal que consiste en que me permite profundizar en cuestións que, de non ser por este blogue, só as rozaría superficialmente. En efecto, o exercicio de ter que escribir sobre algo que pensas que entendes móstrache que hai moitos niveis de coñecemento e que só o traballo e a reflexión profunda che deixa realmente pegada.

A orixe desta entrada, como de moitas outras do blogue, está nalgún aspecto que me chamou a atención dalgunha lectura. Nesta ocasión foi o relato de Eli Maor en Trigonometric Delights sobre unha anécdota que lle sucedeu a François Viète (1541-1630) e que para a miña sorpresa tamén aparece referida na Historia de la matemática de Carl B. Boyer.  Viète soa no entorno escolar pois levan o seu nome as fórmulas que relacionan os coeficientes dunha ecuación coa suma, produto ou combinacións de sumas e produtos das raíces da ecuación. A súa contribución máis importante foi o libro In artem analyticem isagoge, que abreu as portas da álxebra cara o futuro establecendo a distinción entre coeficientes e incógnitas. A súa capacidade analítica levou a Viéte a desencriptar os códigos de cifrado utilizados polo rei español Filipe II, feito que contribuíu en boa medida a que Henrique IV accedera á coroa francesa.


A anécdota en cuestión relataba que o embaixador dos Países Baixos puxera en coñecemento de Henrique IV un libro de Adriaan van Roomen (1561-1615), Ideae mahtematicae, no que citaba a moitos matemáticos da época como o xesuíta Clavius (1538-1612), o campión no cálculo de cifras de $\pi$ Ludolph van Ceulen (1540-1610), Simon Stevin (1548-1620), ou o astrónomo Ticho Brahe (1546-1601). Porén no Ideae non aparecía ningún matemático francés. 

Adrian van Roomen usando o método arquimediano chegara a dar 16 cifras exactas do número de $\pi$ para o que tivo que traballar cun polígono de $15\cdot 2^{60}$ lados. Parece que tiña afición polos cálculos exhorbitados pois nese mesmo libro propoñía como reto unha ecuación de grao 45. O embaixador acrecentara o seu desafío indicando que non había en Francia ningún matemático capaz de resolvela. Nunha crónica cóntase que nese momento Viète estaba en Fontainebleau polo que foi inmediatamente requerido por Henrique IV para pesentarlle o reto. Antes de que o rei tivera tempo a sair da estancia, Viète xa achara dúas solucións. Esta mesma crónica conta que ao día seguinte trouxera outras moitas pois o número total delas era infinita (!).

O que si é certo é que Viéte dou coas 23 solucións positivas da ecuación pois así o publicou nunha resposta no ano 1595. O noso obxectivo será ver como o fixo. Antes de nada teremos que presentar a ecuación:

$$x^{45}-45x^{43}+945x^{41}-12300x^{39}+111150x^{37}-740259x^{35}+3764565x^{33}\\-14945040x^{31}+46955700x^{29}-117679100x^{27}+236030652x^{25}-378658800x^{23}\\+483841800x^{21}-488494125^{19}+384942375x^{17}-232676280x^{15}+105306075x^{13}\\-34512075x^{11}+7811375x^{9}-1138500x^{7}+95634x^{5}-3795x^{3}+45x=K$$

Mete medo, non? Pois iso non é todo, o número que aparece no segundo membro é

$$K=\sqrt{\frac{7}{4}-\sqrt{\frac{5}{16}-\sqrt{\frac{15}{8}-\sqrt{\frac{45}{64}}}}}\; \; \; \; \; \; \; \; \; [1]$$

Con todo, Viète contaba con algunhas pistas pois van Roomen ofrecía algunha solución para outros valores de $K$. Por exemplo, un deles  $K_1=\sqrt{2+\sqrt{2}}$,  para un estudoso da trigonometría como Viète era completamente transparente pois coincide co valor de $2\cdot sen(75)$. Intentaremos demostrar que $K=2\cdot sen12$. Comenzaremos simplificando algo [1]:

$$K=\sqrt{\frac{7}{4}-\sqrt{\frac{5}{16}-\sqrt{\frac{15}{8}-\sqrt{\frac{45}{64}}}}}=\\=\sqrt{\frac{7-\sqrt{5}}{4}-\sqrt{\frac{15}{8}-\frac{\sqrt{45}}{8}}}=\sqrt{\frac{7-\sqrt{5}}{4}-\sqrt{\frac{30-2\sqrt{45}}{16}}}=\\=\sqrt{\frac{7-\sqrt{5}-\sqrt{6}(5-\sqrt{5})}{4}}$$

$$K^{2}=\frac{7-\sqrt{5}-\sqrt{6}(5-\sqrt{5})}{4}\;\;\; \;\;\;\;[2]$$

Calcularemos agora  o $sen(12)$ a partir das razóns trigonométricas dos ángulos de 72º e 60º e aplicando a fórmula do seno dunha resta: $$sen(\alpha -\beta )=sen\alpha \cdot cos\beta -cos\alpha \cdot sen\beta $$

As razóns trigonométricas de 60 son ben coñecidas: $$sen60=\frac{\sqrt{3}}{2}\;\;\;\; \;\;\;\;cos60=\frac{1}{2}$$

Sabemos que un triángulo isóscele formado por dúas diagonais e un lado dun pentágono regular contén ángulos de 72º. Ademais se os lados do pentágono son unitarios, as diagonais terán como medida o número áureo $\phi $



$$cos72=\frac{1}{2\phi }=\frac{1}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{4}$$

$$sen^{2}72=1-\left ( \frac{\sqrt{5}-1}{4} \right )^{2}=\frac{5+\sqrt{5}}{8}$$

$$sen72=\sqrt{\frac{5+\sqrt{5}}{8}}=\frac{\sqrt{2}}{4}\left ( \sqrt{5+\sqrt{5}} \right )$$

Polo tanto

$$sen12=sen(72-60)=sen72\cdot cos60-cos72\cdot cos60=\\=\frac{\sqrt{2}}{4}(\sqrt{5+\sqrt{5}})\frac{1}{2}-\frac{\sqrt{5}-1}{4}\frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{8}\sqrt{5+\sqrt{5}}-\frac{\sqrt{3}}{8}(\sqrt{5}-1)$$

$$sen^{2}12=\frac{2}{64}(5+\sqrt{5})+\frac{3}{64}(6-2\sqrt{5})-\frac{2\sqrt{6}}{64}\sqrt{(5+\sqrt{5})(\sqrt{5}-1)^{2}}=\\\frac{1}{64}\left ( 28- 4\sqrt{5}-4\sqrt{6}\sqrt{5-\sqrt{5}}\right )=\frac{1}{16}\left ( 7-\sqrt{5} -\sqrt{6}\sqrt{5-\sqrt{5}}\right )\;\;\; \;\;\;\;[3]$$

Comparando [2] e [3]: $$sen^{2}12=\frac{1}{4}K^{2}\Rightarrow 2\cdot sen12=K$$

Xa sabemos que é o que se agochaba no segundo membro da ecuación. Nunha vindeira entrada estudaremos o primeiro membro.

Ningún comentario:

Publicar un comentario