terça-feira, 11 de novembro de 2014

O teorema de Xavier Queipo

No número 120 do Sermos Galiza o escritor Xavier Queipo escribía unha columna titulada "A política galega e o segundo teorema de Mikami-Kobayashi"
Pasaba o escritor a explicar como visualizar o teorema:
Vailles soar unha chisca excéntrico, mais pídolles que se armen de lapis e papel, contando con que se teñen unha boa visión tridimensional (non é o meu caso) non van precisar deses aparellos
Esa falta de visión espacial tampouco debería ser un problema para Xavier Queipo porque o resultado é de xeometría plana. Chéganos polo tanto cun par de dimensións. De todas formas explica moi ben o seu teorema:
Tracen un círculo e inscriban nel un cuadrilátero non regular. Si xa teñen os catros puntos e as liñas  que os unen debuxadas, daquela xa poden trazar as diagonais do cuadrilátero. Ben. Xa imos avanzando. Agora deberán inscribir un círculo en cada un dos catro triángulos que resultaron ao trazar as diagonais.[...] Agora chega o momento curcial, marquen o centro deses catro círculos inscritos en cadnseu triángulo, xunten os centros deses círculos e obterán, sen dúbida, un rectángulo.
 Así o fixen. Ou polo menos iso foi o que entendín. Pero, oh, sorpresa! non aparecía rectángulo por ningures:

Que é o que pasa? Xavier Queipo referíase ao chamado segundo teorema de Mikami-Kobayashi, que di que nun cuadrilátero cíclico os incentros dos triángulos formados ao trazar unha diagonal xunto cos incentros dos outros dous triángulos de trazar a outra diagonal, forman sempre un rectángulo. Podemos ver unha demostración aquí.

O teorema de Xavier Queipo
De todas formas é interesante saber para que usou no seu artigo Xavier Queipo o nomeado teorema de Mikami-Kobayashi. Queipo recolle unha idea xeométrica como argumento para trazar as liñas da xeometría política galega. Os catro incentros son
os puntos cardinais das catro tendencias políticas que están na mente de todos, a saber, os conservadores cirtiano-demócratas (PP), os socialistas (PS), os galeguistas (BNG, ANOVA e outros) e os partidos de esquerda ou centro esquerda estatalista (EU, Podemos ou outros) [...] O miolo da cuestión é que siginifica ese rectángulo en toda esta trama unha chisca estraña. Pois o rectángulo significa a correlación de forzas do poder: as ideas que marcan unha época.
Continuando co paralelismo, cada vez que temos eleccións muda a configuración do esquema; uns círculos vólvese máis grandes e outros minguan. Pero tal e como nos di o teorema,  os marcos referenciais fican ortogonais.

Anotacións finais.
Se no artigo do Sermos Galiza non se fixera ningunha referencia á xeometría, seguramente eu non o lería agora non tería na cabeza a idea explicada sobre o retrato do panorama político. Gustoume moito que nun artigo lonxano ao mundo das matemáticas se fixera uso das mesmas.
Vemos como unha persoa allea ao mundo das matemáticas retomou momentáneamente o seu interese polas mesmas ao escoitar unha conversa. En efecto, Queipo oe por azar como dúas persoas falan do teorema de Carnot. A curiosidade lévao a profundizar no tema e, tirando do fío chega a un grupo de resultados que teñen que ver cunha curiosa tradición xaponesa, o sangaku. Trátase neste caso dunhas tabliñas dos séculos XVIII e XIX  con problemas de carácter xeométrico onde abundan construcións con figuras tanxentes e normalmentes con cículos ou polígonos inscritos uns dentro doutros. O importante é que as matemáticas non lle producen o que a moitos, rexeitamento. Non ten medo de achegarse a elas, incluso de empregalas para facer unha análise da estrutura política galega. E isto é moi bo.
Se hai algo do que o mundo das matemáticas, especialmente o seu ensino,  está moi necesitado, é dunha relación máis fluída coa sociedade. E iso é o que fai Xavier Queipo.Cómpre romper prexuízos, sobre todo nun momento no que as liñas directrices da política educativa van por camiños pouco desexables. O papel que a LOMCE asigna á materia de matemáticas dentro co currículo é estarrecedor. Aparecen claramente como a máquina perfecta de etiquetaxe e discriminación no contexto escolar. Por iso cómpre, máis que nunca tecer liñas de reforzo doutra visión das matemáticas. Temos que potenciar un achegamento integrado, amable, próximo, útil e usable. Artigos como o de Queipo son exemplos deste labor. Por certo, esas liñas do número 120 do Sermos Galiza son as únicas impresas en papel que puden ler en galego neste ano. Significativo, non si?

3 comentários:

  1. Feazas pola explicación. Agora enténdoo mellor. Mágoa non ter ferito o experimento co papel eu mesmo. A próxima vez terei máis coidado...

    ResponderEliminar
    Respostas
    1. Creo que aínda que se fixera un esquema en papel non se vería moi claramente o que pasa, a menos que se tivera moito coidado, usando regra e compás....e claro, ao trazar as diagonais podemos falar de 8 triángulos distintos e en matemáticas non podemos xogar con ambigüidades. De todas formas eu non coñecía o teorema e agradezo moito que por esta vía tan curiosa me chegara noticia del.
      Non está de máis felicitar a Queipo e ás outras tradutoras polo éxito obtido coa publicación en galego do Ulises.

      Eliminar
  2. Grazas no nome propio e dos compañeiros da equipa de traducion polos vosos parabéns. A min o que me parece interesante do artigo -aparte da gafe con os trazado dos triangulos, que xa vai quedar gravada en min como unha falta grave- é a relacion enre o rectangulo do teorema e mais a zona de conforto da democracia (polo feito de relacionar duas disciplinas talmente afastadas). Queipo

    ResponderEliminar