Cartel da Olimpíada Matemática Galega 2018 |
Partindo de que o triángulo laranxa do cartel é un triángulo rectángulo, a primeira igualdade é o teorema de Pitágoras. Pero, e as outras?
Pois ben, non cómpre ser moi espelido, nin precisamos consultar esta anotación para pensar, que de seren certas estas fórmulas, conviría estudar o caso xeneralizado:
$${ A }_{ 2n+1 }+{ B }_{ 2n+1 }={ C }_{ 2n+1 }\\ { A }_{ 2n }+{ B }_{ 2n }={ C }_{ 2n }$$
A cadeira da noiva ou a configuración de Vecten
Sacado de aquí |
A configuración que presentamos no gif dá para moito. Por exemplo, se substituímos os cadrados por triángulos equiláteros, é inmediato demostrar que a área do construído sobre a hipotenusa igual á suma dos levantados sobre os catetos. A mesma relación teriamos se no canto de cadrados ou triángulos colocamos calquera polígono regular, ou incluso semicírculos, ou rectángulos semellantes,... ou en xeral figuras semellantes.
A pesar de ser un resultado clásico, coñecido por Hipócrates de Quíos (V a.C.), ou de ser un dos resultados máis destacables dos Elementos (proposición VI.31), lembro perfectamente que non souben del ata un par de anos despois de rematar a carreira (ben, confesemos todo, en realidade non coñecía prácticamente ningún resultado de xeometría sintética)
Insistindo na figura anterior, consideremos un dos pasos que máis agradan aos que remexen nas matemáticas. No canto dun triángulo rectángulo poñamos un triángulo calquera, e sobre os seus lados construímos cadrados. Os segmentos FC e KB seguirán cortándose nun punto da altura AL? A resposta é afirmativa.
Figura 1 |
Un pode pasar varias xornadas dándolle voltas a estas ideas, remexendo nas propiedades de distintos puntos e segmentos que participan na construción dos puntos de Vecten. Unha forma de xogar con elas consiste en considerar o punto de Vecten interior, aquel que se forma do mesmo xeito pero a partir dos dos cadrados construídos "cara adentro", solapando o triángulo.
Sen desviarnos do primeiro camiño, considerando a figura 1 sobre a que construímos o punto de Vecten orixinal (exterior), achegaremos unha propiedade ben curiosa:
Figura 2 |
Propiedade. Os segmentos que unen os centros dos cadrados OB e OC co punto medio MA do lado BC do triángulo son perpendiculares.
O resultado anterior ten como consecuencia case inmediata o Teorema de Finsler-Hadwiger, do que xa falamos noutra ocasión
Figura 3 |
(Teorema de Finsler-Hadwiger). Dados dous cadrados OABC e OA'B'C' cun vértice común O, os puntos medios dos segmentos AA' e CC' xunto cos centros dos cadrados forman tamén un cadrado (isto é: WXYZ é un cadrado)
Figura 4 |
(Teorema de Napoleón). Dado un triángulo calquera, se sobre os seus lados levantamos triángulos equiláteros, os seus centros determinan outro triángulo equilátero.
(NOTA: nun triángulo equilátero podemos falar de centro porque coinciden ortocentro, baricentro, incentro e circuncentro. Por esta razón nun triángulo equilátero podemos falar de centro a secas.)
Atrevámonos a dar un paso máis ampliando a configuración de Vecten cos triángulos que se forman ao unir os vértices dos cadrados. Resulta que estes novos triángulos teñen todos a mesma área, e que ésta coincide co triángulo laranxa de partida. Non é difícil demostralo facendo uso do teorema do coseno, e así llo teño proposto nalgunha aula de 1º de bacharelato, mais non sei se volverei a facelo porque hai unha demostración disto moito máis sinxela, e por outra banda, máis xeral, debida a Steven L. Snover. En primeiro lugar, o triángulo de partida non ten por que ser rectángulo. Ademais non cómpre realizar ningunha operación debido á impediatez da proba visual.
Consideremos un dos triángulos, rotémolo 90º en dirección contraria ás agullas dun reloxo. Que obtivemos?:
Pois si, obtivemos dous triángulos coa mesma base a . Ademais estas bases descansan sobre a mesma recta polo que temén é evidente que teñen a mesma altura, ergo a mesma área.
E se imos máis alá?
Configuración de Vecten |
Pode que nunha seguinte entrada trate este tema.
Mentres deixo tempo para abordar a cuestión dos trapecios, partillo o seguinte vídeo, que a pesar de ser elaborado con fins crematísticos, é tamén unha peza divulgativa moi ben feitiña que remexe no teorema de Pitágoras pero que comenta resultados que van máis alá.
Ningún comentario:
Publicar un comentario