Un libro excepcional |
Non poucas veces observamos na libreta ou nun exame dun alumno que aquilo ao que chama "a" no enunciado denótao despois como "A". Nese caso levámonos as mans á cabeza.
Tampouco é infrecuente que ese "a" (ou "A") cambie máis ou menos aleatoriamente durante a resolución do exercicio. Entón é cando baixamos todos os santos do ceo. E, insisto, temos razón.
Nesta entrada vou ir contra todas as normas e demostrarei que: $$s\cdot r=s\cdot R$$
onde, obviamente, "r" e "R" farán referencia a cantidades distintas.
Para poder avanzar, primeiro cómpre dar marcha atrás. Comenzaremos cun resultado xeométrico moi coñecido
Teorema. Dado un triángulo (acutángulo) ABC, sexa s o semiperímetro e r o raio da circunferencia inscrita. Entón a área do triángulo será: [ABC]=s・r
Demostración:
Sexa I o incentro, $$\left[ ABC \right] =\left[ AIC \right] +\left[ BIC \right] +\left[ CIA \right] =\frac { 1 }{ 2 } rc+\frac { 1 }{ 2 } ra+\frac { 1 }{ 2 } rb=sr$$
QED.
Denotemos por "R" o raio da circunferencia circunscrita. Acabaremos vendo que esta área é o produto dun semiperímetro por R. Pero primeiro pegaremos un rodeo que nos levará pola resolución do problema de Fagnano.
O problema de Fagnano. Nun triángulo acutángulo ABC determina o triángulo inscrito D0E0F0 de perímetro mínimo.
H. A. Schwartz (1843-1921)ofrecera unha solución fantástica deste problema mediante unha repetida reflexión do triángulo ABC. O que vou presentar de seguido é unha alternativa ofrecida por Féjer (1880-959) , un alumno de H. A. Schwartz , e que recollo dun libro excepcional, Números y figuras (Alianza, 1970), de Otto Toeplitz e Hans Rademacher.
Sexa AD1 simétrico de AD respecto AB
Sexa AD2 simétrico de AD respecto AC
ED2 simétrico de ED respecto de AC, polo que ED2=ED
FD1 simétrico de FD respecto de AB, polo que FD1=FD
Entón o perímetro do triángulo DEF coincide coa lonxitude da liña D1FED2
Con D fixo, o menor perímetro dos triángulos inscritos será o de DE0F0
Vexamos agora onde colocar D para que D1D2 sexa o menor posible
AD2 e AD1 son os simétricos de AD. Polo tanto AD1D2 é isóscele
Agora ben, o ángulo D1AD2 non depende da escolla de D1: é sempre o mesmo.
$$DAB\quad e\quad { D }_{ 1 }AB\quad son\quad congruentes\quad \Longrightarrow \widehat { DAB } =\widehat { { D }_{ 1 }AB } $$
$$DAC\quad e\quad { D }_{ 2 }AC\quad son\quad congruentes\quad \Longrightarrow \widehat { DAC } =\widehat { { D }_{ 2 }AC } $$
Polo tanto $$\widehat { { D }_{ 1 }A{ D }_{ 2 } } =2\cdot \widehat { BAC } $$
O triángulo AD1D2 terá a menor área cando AD1=AD2=AD sexa o máis pequeno posible. Como a menor distancia dun punto a unha recta é a perpendicular, AD será menor cando sexa a altura sobre o lado BC.
Polo tanto a solución é única: D0E0F0. Ademais, análogamente o feito con D, poderíamos repetilo para F ou para E.. De aí que F é E sexan os pés das outras dúas alturas. Así DE0F0 é o triángulo órtico, e tamén é a solución ao problema de Fagnano (de aí que escriba D=D0 )Pero aquí non acaba o conto.
Como BF0C e BE0C son triángulos rectángulos, F0E0BC é un cuadrilátero cíclico. De aí: $$\widehat { B } +\widehat { { F }_{ 0 }{ E }_{ 0 }C } =180º\Longrightarrow \widehat { A{ E }_{ 0 }{ F }_{ 0 } } =B=\widehat { X{ E }_{ 0 }C } $$
E tamén (por reflexión e por seren opostos polo vértice):
$$\widehat { B } =\widehat { { D }_{ 0 }{ E }_{ 0 }C } =\widehat { A{ E }_{ 0 }G } $$
O dito para o ángulo B pódese reproducir para A e C.
Ademais a lonxitude D1D2 é o perímetro do triángulo órtico e por reflexión o ángulo A do triángulo orixinal pasa a ser 2A:
$${ s }_{ 0 }=\bar { A{ D }_{ 1 } } \cdot senA=\bar { A{ D }_{ 0 } } \cdot senA$$
$$2R=\frac { a }{ senA } $$
$$R\cdot { s }_{ 0 }=\frac { a }{ 2senA } \bar { A{ D }_{ 0 } } senA=\frac { 1 }{ 2 } \bar { A{ D }_{ 0 } } a=\left[ ABC \right] =r\cdot s$$
Está claro que se non distinguira entre s (semiperímetro do triángulo ABC) e s0 (semiperímetro do triángulo órtico) estaría escribindo un disparate (r・s=R・s). Velaí a importancia destas subtís distincións pois, é tan inconveniente denotar a mesma cousa mediante símbolos distintos (como "a" e "A") como usar o mesmo símbolo para representar elementos distintos. Esta batalla, quizais condenada ao fracaso, líbrase acotío nas nosas aulas, e é fundamental na formación da rapazada no seu proceso de inculturación matemática.
Nesta entrada, xunto coa anterior, quixen poñer de manifesto o que teñen o profesor e o alumno na cabeza cando insiste tanto na necesidade da reflexión e a coherencia na notación. Se, por unha banda, nunca convén aniquilar as expectativas do alumno, pola outra é ineludible levar polo rego da boa escritura matemática aos discentes, poñendo en evidencia os problemas dunha mala notación. Como en todo, no ámbito do ensino, manter ese equilibrio non é nada fácil.
Ningún comentario:
Publicar un comentario