Páginas

venres, 21 de outubro de 2022

Intuición esganada cunha corda

Hai algunhas cuestións que nos chaman moito a atención por daren lugar a resultados sorprendentes, e se os cualificamos de sorprendentes é porque desafían a nosa experiencia ou a nosa intuición. Ese é o caso do problema do "cinto da Terra" que xa tratamos noutra ocasión ao recoller un artigo de Jaime Poniachik na revista Cacumen. A cuestión era a seguinte:

O cinto da Terra. Imaxinemos un cordel cinguido á Terra sobre o ecuador. Se lle engadimos un metro, vai quedar algo folgado, canto? Axustemos agora outra o cordel arredor dunha laranxa e despois agregámoslle tamén un metro. O sorprendente é que agora a folgura do cinto da laranxa coincide coa da Terra.


A explicación é ben simple. A lonxitude da corda inicial é 2πr. Se lle engadimos un metro a nova lonxitude será 2πr+1=2π(r+12π)

polo que o raio da corda extendida supera en 1/2π unidades ao raio da circunferencia inicial independentemente do valor do raio. No caso que nos ocupa, como incrementamos a lonxitude nun metro, o raio aumentaría uns 16 cm tanto no caso da Terra como no da laranxa. Se nos pediran un valor para este problema antes de ver a solución seguramente aventurariamos unha cantidade milimétrica pois,a priori, dá a impresión de que engadir un metro a unha cantidade tan desproporcionadamente maior como a da circunferencia terrestre (uns 40 000 km) vén sendo tanto como non engadir nada. 

Tratemos agora un problema cunha fasquía moi semellante. Segundo conta Zhúkov no seu libro El omnipresente número π (Editorial URSS, 2004), o profesor Anatoli  Dimítrievich Myshkis tivo a simpática idea de propoñer o seguinte problema nunha das súas clases:

Tíralle da corda. Supoñamos que o globo arredor do globo terráqueo se cingue unha corda inextensible. Despois de alongala un metro, tómase a corda por un punto e levántase da superficie da Terra ata a maior altura posible. Determínese esa altura.

O ideal sería que o lector ofrecese unha resposta, mesmo a escribise antes de seguir lendo a solución a esta espiñenta cuestión e que recollo esencialmente do citado libro.


Sexa OA=OC=OC'=R o raio terrestre, AB=a, AC=h e α=∠AOB. De todas estas cantidades só coñecemos R. O triángulo AOB é rectángulo en A, de aí que tanα=aR[1]

Aplicando o teorema de Pitágoras:(R+h)2=R2+a2R2+2Rh+h2=R2+a2

 Operando queda esta ecuación de segundo grao en h: h2+2Rh+a2=0h=2R±4R2+4a22=R±R2+a2

Tomando o resultado positivo e despois multiplicando e dividindo por R:  h=R2+a2R=R[1+(aR)21][2]

Só nos quedaría determinar a, ou neste caso,aR. A cuestión non é simple. Teremos que ir máis alá da manipulación alxébrica e botar man de resultados do cálculo diferencial.

A lonxitude, en radiáns, do  arco AOC é πα e a da semicircunferencia CC' é πR, polo tanto o a medida do arco AC'  será a súa diferenza πRπα. A lonxitude da corda desde B, pasando por A ata C':a+πRπα=2πR+12=πR+12

Simplificando esta expresión e dividindo por R:aRRαR=12Rα=aR12R

Substituíndo en [1]:tan(α)=tan(aR12R)=aR[3]

Como α ten un valor moi pequeno e unha boa aproximación da tanxente na veciñanza do cero é a serie de Taylor temos que tan(α)=α+13α3++ϵ

Aplicando esta relación a [3] temos que aR12R+13(aR12R)3+ϵ=aR

(aR12R)3=32R3ϵaR12R=32R3ϵ3

Como comparativamente os valores de 12R e 3ϵ son moi pequenos podemos establecer a seguinte aproximación aR32R3

Que podemos substituír en [2] para finalmente poder achar o buscado valor de h: hR[1+(32R3)21]

Como valor de R tomarei o dado pola definición de metro da Academia Francesa: o metro é a dez millonésima parte dun cuadrante de meridiano, isto é, que a circunferencia da Terra será de 40 millóns de metros. É certo que agora sabemos que a Terra non é esférica e que posteriormente aos traballos de medición do meridiano redefiniuse o metro e axustáronse as medidas reais do globo terráqueo. A suposición dun planeta perfectamente esférico e a escolla deste valor para o raio quizais sexa tan romántica como o propio enunciado do teorema. De todas formas non inflúe no resultado final. Para poder achalo na última fórmula non nos serve a calculadora, temos que botar man dunha folla de cáculo ou do Wolphram Alpha. O resultado final é o inesperado valor h≈121 m

Agora que temos destrozada a intuición quizais poidamos abordar con mellor disposición a seguinte proposta que recollo do mesmo artigo de Poniachik nomeado anteriormente e que é unha adaptación dun problema referido por Ross Honsberger no libro The Mathematical Gardner (David A. Klamer, 1981). 

O riel dilatado. Consideremos un riel recto AB de 500 metros de lonxitude fixado nos extremos. A calor do verán prodúcelle unha dilatación de 2 metros, observándose unha xoroba de altura x. Estímese este valor se a dilatación é simétrica.

Como na cuestión anterior pídese unha resposta baseada na intuición antes de ter a tentación de botarlle un ollo á resposta. Comprobaremos ademais que esta proposta resulta moi acaída para ser tratada nun curso da ESO.

Xa que nos piden unha estimación imos considerar que a dilatación está formada por rectas. Así teremos dous triángulos rectángulos de catetos 250 e x cunha hipotenusa de 251 metros. Apliquemos o teorema de Pitágoras (e de paso, repasemos as chamadas identidades notables).x=25122502=(251+250)(251250)=501

Creo que nin cómpre unha calculadora para decatarse de que o riel alcanzou unha altura de case 71 m.

Ningún comentario:

Publicar un comentario