Para saber ata onde poder chegar estableceuse un sistema de axiomas que establecen todas as posibilidades de pregado. Son os 7 axiomas de Huzita-Hatori. Sobre esta base demostrouse que mediante dobreces poden realizarse as operacións aritméticas da suma, o produto, a división, a raíz cadrada e a raíz cúbica. De aí que o conxunto dos números construtibles mediante origami sexa un subcorpo dos complexos, en concreto o menor corpo que contén aos quebrados e todas as raíces cadradas e cúbicas destes.
Mediante a papiroflexia podemos realizar moitas máis construcións que con regra e compás. Un exemplo significativo é o problema da duplicación do cubo. Dado un cubo trátase de que obteñamos outro de volume duplicado. Se o cubo orixinal ten aresta a, o cubo de volume dobre debe ter aresta $\sqrt[3]{2}\cdot a$. Polo tanto o obxectivo é obter mediante técnicas de papiroflexia o valor $\sqrt[3]{2}$. Lembremos que isto non pode conseguirse usando compás.
A solución que reproducimos aquí é a resposta a un reto proposto na revista canadiana Crux Mathematicorum (páx. 284 e 285 do nº 12 do mes de decembro de 1986).
Comezaremos dividindo o papel en terzos. Xa viramos como obter calquera fracción na entrada anterior. De seguido realizamos unha dobrez de Haga facendo coincidir P co segmento inferior AB pero de forma que o punto Q fique sobre o outro segmento vertical. O reto consistía en obter a razón AP/PB.
Ningún comentario:
Publicar un comentario